分析 先證一個結論:對于橢圓上非長軸端點任一點P,有${k_{AP}}{k_{BP}}=\frac{y_P}{{{x_p}-a}}•\frac{y_P}{{{x_p}+a}}=\frac{y_p^2}{{x_P^2-{a^2}}}=-\frac{b^2}{a^2}=-\frac{1}{2}$,再根據橢圓對稱性得${k_{A{P_1}}}{k_{A{P_{198}}}}={k_{A{P_1}}}{k_{B{P_1}}}=-\frac{1}{2}$,因此198條直線 A P1,A P2,…,A P198的斜率乘積為${(-\frac{1}{2})^{99}}=-\frac{1}{{{2^{99}}}}$
解答 解:∵離心率為$\frac{{\sqrt{2}}}{2}$,∴$\frac{{b}^{2}}{{a}^{2}}=\frac{1}{2}$,對于橢圓上非長軸端點任一點P,有${k_{AP}}{k_{BP}}=\frac{y_P}{{{x_p}-a}}•\frac{y_P}{{{x_p}+a}}=\frac{y_p^2}{{x_P^2-{a^2}}}=-\frac{b^2}{a^2}=-\frac{1}{2}$,再根據橢圓對稱性得${k_{A{P_1}}}{k_{A{P_{198}}}}={k_{A{P_1}}}{k_{B{P_1}}}=-\frac{1}{2}$,因此198條直線 A P1,A P2,…,A P198的斜率乘積為${(-\frac{1}{2})^{99}}=-\frac{1}{{{2^{99}}}}$
故答案為:-$\frac{1}{{2}^{99}}$.
點評 定點、定值問題通常是通過設參數或取特殊值來確定“定點”是什么、“定值”是多少,或者將該問題涉及的幾何式轉化為代數式或三角問題,證明該式是恒定的.定點、定值問題同證明問題類似,在求定點、定值之前已知該值的結果,因此求解時應設參數,運用推理,到最后必定參數統消,定點、定值顯現.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | b>0且a<0 | B. | b=2a<0 | C. | b=2a>0 | D. | b=-2a<0 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,2) | B. | (1,2] | C. | [1,2) | D. | [1,2] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com