A. | 30° | B. | 45° | C. | 60° | D. | 90° |
分析 以A為原點,在平面ABC內過A作AC的垂線為x軸,AC為y軸,AP為z軸,建立空間直角坐標系,利用向量法能求出二面角A-BC-P的大小.
解答 解:∵AB是⊙O的直徑,PA垂直于⊙O所在平面,C是圓周上不同于A,B兩點的任意一點,
且AB=2,$PA=BC=\sqrt{3}$,
∴AC⊥BC,AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=$\sqrt{4-3}$=1,
以A為原點,在平面ABC內過A作AC的垂線為x軸,AC為y軸,AP為z軸,建立空間直角坐標系,
P(0,0,$\sqrt{3}$),B($\sqrt{3}$,1,0),C(0,1,0),
$\overrightarrow{PB}$=($\sqrt{3},1$,-$\sqrt{3}$),$\overrightarrow{PC}$=(0,1,-$\sqrt{3}$),
設平面PBC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=\sqrt{3}x+y-\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{PC}=y-\sqrt{3}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(0,$\sqrt{3}$,1),
平面ABC的法向量$\overrightarrow{m}$=(0,0,1),
設二面角A-BC-P的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{2}$,∴θ=60°,
∴二面角A-BC-P的大小為60°,
故選:C.
點評 本題考查二面角的大小的求法,涉及到空間中線線、線面、面面間的位置關系等基礎知識,考查推理論證能力、運算求解能力、空間想象能力,考查化歸與轉化思想,是中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | .$\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | .$\frac{{2\sqrt{2}}}{3}$ | D. | .$-\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
銷售時間x(月) | 1 | 2 | 3 | 4 | 5 |
銷售額y(萬元) | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com