分析 當x0>0時,f(x0)=lgx0=1,;當x0<0時,$f({x}_{0})={{x}_{0}}^{-2}=1$.由此能求出x0的值.
解答 解:∵函數f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{{x}^{-2},x<0}\end{array}\right.$,f(x0)=1,
∴當x0>0時,f(x0)=lgx0=1,解得x0=10;
當x0<0時,$f({x}_{0})={{x}_{0}}^{-2}=1$,解得x0=1,不成立.
綜上,x0=10.
∴x0的值是10.
故答案為:10.
點評 本題考查函數值的求法,是基礎題,解題時要認真審題,注意函數性質的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 588 | B. | 480 | C. | 450 | D. | 120 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [$\frac{2}{3}$,1] | B. | [0,1] | C. | [$\frac{2}{3}$,+∞) | D. | [1,+∞] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com