日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
3.已知sin(3π+α)=2sin$({\frac{3π}{2}+α})$,求下列各式的值:
(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$;
(2)sin2α+sin 2α.

分析 利用誘導公式、同角三角函數的基本關系,求得tanα=-2,從而求得要求式子的值.

解答 解:∵sin(3π+α)=2sin$({\frac{3π}{2}+α})$,∴-sinα=-2cosα,∴tanα=-2,
∴(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$=$\frac{2tanα-3}{4tanα-9}$=$\frac{-4-3}{-8-9}$=$\frac{7}{17}$;
(2)sin2α+sin 2α=$\frac{{sin}^{2}α+2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α+2tanα}{{tan}^{2}α+1}$=$\frac{4-4}{4+1}$=0.

點評 本題主要考查同角三角函數的基本關系,二倍角公式的,以及三角函數在各個象限中的符號,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

13.若a>b>0,c>1,則(  )
A.logac>logbcB.logca>logcbC.ac<bcD.ca<cb

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.若平面α∥β,直線a⊆α,直線b⊆β,那么直線a,b的位置關系是(  )
A.相交B.平行C.異面D.平行或異面

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.給出下面四個命題(其中m,n,l為空間中不同的直線,α,β是空間中不同的平面)中正確的命題為(  )
A.m∥n,n∥α⇒m∥αB.α⊥β,α∩β=m,l⊥m⇒l⊥β
C.l⊥m,l⊥n,m?α,n?α⇒l⊥αD.m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.若三棱錐P-ABC的側棱長PA=PB=PC,則點P在底面的射影O是△ABC的外心.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知點$({\sqrt{2},2})$與點$({-2,-\frac{1}{2}})$分別在冪函數f(x),g(x)的圖象上.
(1)分別求冪函數f(x),g(x)的解析式,并在同一直角坐標系中畫出兩個函數的圖象;
(2)觀察圖象,并指出當x為何值時,有:①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知$sin2θ-4sin({θ+\frac{π}{3}})sin({θ-\frac{π}{6}})=\frac{{\sqrt{3}}}{3}$,則cos2θ等于(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$-\frac{{\sqrt{3}}}{6}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.函數f(x)=-(x-5)|x|的單調遞增區間是(0,$\frac{5}{2}$).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.將一個長方體的四個側面和兩個底面延展成平面后,可將空間分成24部分.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 99re在线视频 | 日韩精品一区二区三区第95 | 一级淫片免费 | 在线日韩欧美 | 久久久久亚洲国产 | 成人水多啪啪片 | 日韩欧美国产一区二区 | 蜜桃av人人夜夜澡人人爽 | 国产精品欧美日韩 | 久久人人爽人人爽 | 国产不卡一二三区 | 中文字幕第66页 | 日韩欧美在线综合 | 成人欧美在线 | 久热热 | 国产视频中文字幕 | 色综合成人 | 国产精品一区二区三 | 日韩1区 | 欧美在线二区 | 最近韩国日本免费高清观看 | 日韩av一区在线 | 成人v片| 日本中文字幕一区 | 久久噜噜噜精品国产亚洲综合 | 国产精品美女久久久久aⅴ国产馆 | 日日夜夜av | 福利视频一区二区三区 | 欧美一级二级三级 | 午夜毛片| 成人在线免费观看 | 欧美国产一区二区 | 综合久久网 | 呦呦精品 | 一区2区| 欧美一级片免费观看 | 久久成人亚洲 | 日本一区二区高清不卡 | 一级网站在线观看 | 色婷婷国产精品 | 国产视频一区在线 |