日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

16.若數(shù)列{an}與{bn}滿足${b_{n+1}}{a_n}+{b_n}{a_{n+1}}={({-1})^n}+1,{b_n}=\frac{{3+{{({-1})}^{n-1}}}}{2},n∈{N^*}$,且a1=2,設(shè)數(shù)列{an}的前n項和為Sn,則S63=(  )
A.560B.527C.2015D.630

分析 數(shù)列{an}與{bn}滿足${b_{n+1}}{a_n}+{b_n}{a_{n+1}}={({-1})^n}+1,{b_n}=\frac{{3+{{({-1})}^{n-1}}}}{2},n∈{N^*}$,且a1=2,可得$\frac{3+(-1)^{n}}{2}$an+$\frac{3+(-1)^{n-1}}{2}$an+1=(-1)n+1,a2=-1.n=2k(k∈N*)時,化為:2a2k+a2k+1=2;n=2k-1(k∈N*)時,化為:a2k-1+2a2k=0.可得a2k+1-a2k-1=2,a2k+2-a2k=-1.再利用等差數(shù)列的定義通項公式與求和公式即可得出.

解答 解:∵數(shù)列{an}與{bn}滿足${b_{n+1}}{a_n}+{b_n}{a_{n+1}}={({-1})^n}+1,{b_n}=\frac{{3+{{({-1})}^{n-1}}}}{2},n∈{N^*}$,且a1=2,
∴$\frac{3+(-1)^{n}}{2}$an+$\frac{3+(-1)^{n-1}}{2}$an+1=(-1)n+1,a2=-1.
n=2k(k∈N*)時,化為:2a2k+a2k+1=2;
n=2k-1(k∈N*)時,化為:a2k-1+2a2k=0.
∴a2k+1-a2k-1=2,a2k+2-a2k=-1.
∴數(shù)列{an}的奇數(shù)項與偶數(shù)項分別成等差數(shù)列,公差分別為2,-1,首項分別為2,-1.
∴S63=(a1+a3+…+a63)+(a2+a4+…+a62
=32×2+$\frac{32×31}{2}$×2+31×(-1)+$\frac{31×30}{2}$×(-1)
=560.
故選:A.

點評 本題考查了等差數(shù)列的通項公式與求和公式,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知角α的終邊與單位圓交于點$(-\frac{4}{5},\frac{3}{5})$,那么tanα=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)定義在R上的函數(shù)f(x),對于任意實數(shù)m,n恒有f(m+n)=f(m)f(n),且當(dāng)x>0時,0<f(x)<1,則不等式f(x2)•f(2x-3)>1的解集是(  )
A.(-∞,-3)B.(-3,1)C.(1,+∞)D.(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$彼此不共線,且$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$兩兩所成的角相等,若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=1,|$\overrightarrow{c}$|=3,則|$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$|=$\frac{\sqrt{30}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={y|y=x2,x∈R},B={-2,-1,1,2},則下面結(jié)論中正確的是(  )
A.A∪B=(0,+∞)B.(∁RA)∪B=(-∞,0]C.(∁RA)∩B={-2,-1}D.A∩(∁RB)=[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的漸近線與圓x2+(y-2)2=1相切,則雙曲線C的離心率是(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知中心在原點O,焦點在x軸上的橢圓,離心率e=$\frac{1}{2}$,且橢圓過點(1,$\frac{3}{2}$).
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓左,右焦點分別為F1,F(xiàn)2,過F2的直線l與橢圓交于不同的兩點A、B.
(1)求△F1AB面積的最大值;
(2)△F1AB的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線l方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列四個命題:
①如果θ是第二象限角,則sinθ•tanθ<0;
②如果sinθ•tanθ<0,則θ是第二象限角;
③sin1•cos2•tan3>0;
④如果$θ∈(\frac{3π}{2},2π)$,則sin(π+θ)>0
其中正確的是(  )
A.①②③④B.①③C.②③④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=4x2-4mx+1,在(-∞,-2)上遞減,在(-2,+∞)上遞增.則f(x)在[1,2]上的值域為[21,49].

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 欧美国产日韩在线观看 | 伊人精品 | 一区二区三区在线 | 欧美一区二区 | 尤物久久av一区二区三区亚洲 | 色婷婷综合久久久久中文一区二 | 毛片网页 | 亚洲免费视频在线观看 | 国产精品二区三区 | 久久av免费观看 | 国产精品久久久久一区二区三区共 | 日韩一级av毛片 | 国产精品日本一区二区不卡视频 | 国内精品国产成人国产三级粉色 | 国产成人精品免费视频大全最热 | 美女超碰 | 99久久婷婷 | 国产一区二区三区久久久久久久久 | 中文字幕精品三区 | 成人一区二区三区在线 | 玖玖精品在线 | 国产精品美女久久久久久久久久久 | 亚洲国产一区二区三区四区 | av免费看在线 | 久久一区二区三区四区五区 | 亚洲欧美中文日韩在线v日本 | 国产视频成人 | 久久久成人av| 国产一级视频在线播放 | 日韩色综合| 国产午夜手机精彩视频 | 日本色站| 日韩乱码中文字幕 | 亚洲一区二区中文 | 欧美日韩视频一区二区 | 手机看片369 | 亚洲精品一区中文字幕乱码 | 久久久久久高潮国产精品视 | 日韩欧美一区二区在线观看 | 欧美电影一区 | 免费看一区二区三区 |