日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),過右焦點且斜率為1的直線交橢圓于A、B兩點.
(1)證明:$\overrightarrow{OA}$+$\overrightarrow{OB}$與向量$\overrightarrow{m}$=(a2,-1)共線;
(2)設$\overrightarrow{OM}$=μ$\overrightarrow{OA}$+λ$\overrightarrow{OB}$,當μ22=1且M在橢圓上時,求橢圓方程.

分析 (1)直線與橢圓方程聯立,韋達定理得A、B兩點坐標的關系,即可證明結論;
(2)利用$\overrightarrow{OM}$=μ$\overrightarrow{OA}$+λ$\overrightarrow{OB}$,當μ22=1且M在橢圓上,得出x1x2+a2y1y2=x1x2+a2(x1+c)(x2+c)=0,即可得出結論.

解答 (1)證明:設直線AB的方程為y=x+c,代入$\frac{{x}^{2}}{{a}^{2}}$+y2=1,
化簡得(a2+1)x2+2a2cx+a2c2-a2=0.
令A(x1,y1),B(x2,y2),
則x1+x2=-$\frac{2{a}^{2}c}{{a}^{2}+1}$
又y1=x1+c,y2=x2+c,∴y1+y2=-$\frac{2c}{{a}^{2}+1}$
∵$\overrightarrow{OA}$+$\overrightarrow{OB}$=(x1+x2,y1+y2),
∴$\overrightarrow{OA}$+$\overrightarrow{OB}$與向量$\overrightarrow{m}$=(a2,-1)共線;
(2)解:設M(x,y),
由已知得(x,y)=λ(x1,y1)+μ(x2,y2),
∴x=λx1+μx2,y=λy1+μy2,
∵M(x,y)在橢圓上,
∴(λx1+μx22+a2(λy1+μy22=a2
即λ2(x12+a2y12)+μ2(x22+a2y22)+2λμ(x1x2+a2y1y2)=a2.①
又x12+a2y12=a2,x22+a2y22=a2,μ22=1
∴x1x2+a2y1y2=x1x2+a2(x1+c)(x2+c)=0.
∴(a2+1)x1x2+ca2(x1+x2)+a2(a2-1)=0
代入解得a=$\sqrt{3}$,
∴橢圓方程為$\frac{{x}^{2}}{3}+{y}^{2}$=1.

點評 考查向量共線為圓錐曲線提供已知條件;處理直線與圓錐曲線位置關系常用的方法是直線與圓錐曲線方程聯立用韋達定理.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

3.已知向量$\overrightarrow{m}$=(λ,1),$\overrightarrow{n}$=(λ+1,2),若($\overrightarrow{m}$+$\overrightarrow{n}$)⊥($\overrightarrow{m}$-$\overrightarrow{n}$),則λ=(  )
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.(x+3)(1-$\frac{2}{\sqrt{x}}$)5的展開式中常數項為43.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.若f(x)和g(x)都是奇函數,且F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值5,則F(x)在(-∞,0)上(  )
A.有最小值-5B.有最大值-5C.有最小值-1D.有最大值-1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.下列命題中正確的是( 。
A.若$λ\overrightarrow{a}+μ\overrightarrow$=$\overrightarrow{0}$,則λ=μ=0B.若$\overrightarrow{a}•\overrightarrow$=0,則$\overrightarrow{a}$∥$\overrightarrow$
C.若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$在$\overrightarrow$上的投影為|$\overrightarrow{a}$|D.若$\overrightarrow{a}⊥\overrightarrow$,則$\overrightarrow{a}$•$\overrightarrow$=($\overrightarrow{a}$$•\overrightarrow$)2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.從1到9這9個數字中取出不同的5個數字進行排列,問:奇數的位置上是奇數的排法有多少種?

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知集合H={1,2,3,4},集合K={1,1.5,2,0,-1,-2},則H∩K為( 。
A.{1,2}B.{1,2,0,-1}C.(-1,2]D.{1.5,0}

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.如圖,已知四邊形ABCD和ABEG均為平行四邊形,點E在平面ABCD內的射影恰好為點A,以BD為直徑的圓經過點A,C,AG的中點為F,CD的中點為P,且AD=AB=AE=2
(Ⅰ)求證:平面EFP⊥平面BCE
(Ⅱ)求幾何體ADC-BCE的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.設m,n表示兩條不同的直線,α,β,γ表示三個不同的平面,給出下列四個命題:
①若α⊥γ,β⊥γ,則α∥β;
②若α∥β,m?α,則m∥β;
③若m⊥α,n∥α,則m⊥n;
④若m⊥n,m⊥α,n∥β,則α⊥β.
其中正確命題的序號是(  )
A.①④B.②③C.①②③D.②③④

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 1024国产精品 | 欧美大白屁股 | 99福利| 国内精品视频在线观看 | 一区二区三区四区在线 | 黄色三级视频在线观看 | 天天干天天谢 | 特级特黄aaaa免费看 | 国产人成一区二区三区影院 | 97超碰资源站 | 国产精品视频免费在线观看 | 91久久国产综合久久91精品网站 | 欧美一区三区 | 国产91av在线 | 黄色一级免费看 | 亚洲一区二区 | 99久久久国产精品免费蜜臀 | 欧美成人精品一区二区三区在线看 | 免费在线小视频 | 日韩av在线一区二区 | 亚洲91精品 | 国产一级黄色录像 | 色片在线观看 | 精品国产999久久久免费 | av免费在线观看网站 | 五月天黄色网 | 亚洲另类色综合网站 | 欧美福利一区 | 中文字幕在线网站 | 中文字幕在线观看免费 | 好了av在线 | 国产欧美日韩一区 | 国产成人tv | 国产精品一区二区不卡 | 久久久久久黄色 | 天堂网av在线 | 日韩欧美在线观看视频 | 欧美激情一区二区三区 | 欧美在线视频观看 | 亚洲国产精| 91午夜精品亚洲一区二区三区 |