分析 (1)利用等差數列與等比數列的通項公式即可得出.
(2)利用“錯位相減法”與等比數列的求和公式即可得出.
解答 解:(1)設等差數列{an}的公差為d,∵b1=a1=2,且a3為a2與a5-1的等比中項,
∴${a}_{3}^{2}$=a2•(a5-1),∴(2+2d)2=(2+d)(1+4d),解得d=2.
∴an=2+2(n-1)=2n.
(2)對$n∈{N^*},{b_{n+1}}-{b_n}={3^n}{a_n}$=2n•3n.
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=2[(n-1)•3n-1+(n-2)•3n-2+…+1•3]+2.
設Tn-1=3+2×32+…+(n-2)•3n-2+(n-1)•3n-1,
∴3Tn-1=32+2×33+…+(n-2)•3n-1+(n-1)•3n,
∴-2Tn-1=3+32+…+3n-1-(n-1)•3n=$\frac{3({3}^{n-1}-1)}{3-1}$-(n-1)•3n,
∴Tn-1=$\frac{3+(2n-3)•{3}^{n}}{4}$.
∴bn=$\frac{7+(2n-3)•{3}^{n}}{2}$.
點評 本題考查了等比數列與等差數列的通項公式與求和公式、“錯位相減法”,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com