日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

13.在直角坐標系xOy中,設(shè)圓的方程為(x+2$\sqrt{2}$)2+y2=48,F(xiàn)1是圓心,F(xiàn)2(2$\sqrt{2}$,0)是圓內(nèi)一點,E為圓周上任一點,線EF2的垂直平分線EF1的連線交于P點,設(shè)動點P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)直線l(與x軸不重合)與曲線C交于A、B兩點,與x軸交于點M.
      (i)是否存在定點M,使得$\frac{1}{|MA{|}^{2}}$+$\frac{1}{|MB{|}^{2}}$為定值,若存在,求出點M坐標及定值;若不存在,請說明理由;
      (ii)在滿足(i)的條件下,連接并延長AO交曲線C于點Q,試求△ABQ面積的最大值.

分析 (Ⅰ)由足$P{F}_{1}+P{F}_{2}=E{F}_{2}=4\sqrt{3}$,且4$\sqrt{3}$>丨F1F2丨,則點P的軌跡為以F1、F2為焦點,長軸為4$\sqrt{3}$的橢圓,即可求得橢圓方程;
(Ⅱ)(i)設(shè)直線l的方程,代入橢圓方程,由$\frac{1}{丨MA{丨}^{2}}$+$\frac{1}{丨MB{丨}^{2}}$=$\frac{({y}_{1}+{y}_{2})^{2}-2{y}_{1}{y}_{2}}{({m}^{2}+1)({y}_{1}{y}_{2})^{2}}$,利用韋達定理可知2t2+24=72-6t2,即可求得t的值,$\frac{1}{丨MA{丨}^{2}}$+$\frac{1}{丨MB{丨}^{2}}$=1;
(ii)利用弦長公式,求得丨AB丨,利用點到直線距離公式,換元,即可求得△ABQ面積的最大值.

解答 解:(Ⅰ)∵圓的方程為(x+2$\sqrt{2}$)2+y2=48的圓心F1為(-2$\sqrt{2}$,0),半徑為4$\sqrt{3}$.
依題意點P滿足$P{F}_{1}+P{F}_{2}=E{F}_{2}=4\sqrt{3}$,且4$\sqrt{3}$>丨F1F2丨,
故點P的軌跡為以F1、F2為焦點,長軸為4$\sqrt{3}$的橢圓
∴曲線C的方程:$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}=1$.

(Ⅱ)(i)設(shè)M(t,0),設(shè)直線l的方程:x=my+t,A(x1,y1),B(x2,y2),
聯(lián)立$\left\{\begin{array}{l}{x=my+t}\\{{x}^{2}+3{y}^{2}=12}\end{array}\right.$,整理得:(m2+3)y2+2mty+t2-12=0,
y1+y2=-$\frac{2mt}{{m}^{2}+3}$,y1y2=$\frac{{t}^{2}-12}{{m}^{2}+3}$,
$\frac{1}{丨MA{丨}^{2}}$=$\frac{1}{({m}^{2}+1){y}_{1}^{2}}$,$\frac{1}{丨MB{丨}^{2}}$=$\frac{1}{({m}^{2}+1){y}_{2}^{2}}$,
則$\frac{1}{丨MA{丨}^{2}}$+$\frac{1}{丨MB{丨}^{2}}$=$\frac{({y}_{1}+{y}_{2})^{2}-2{y}_{1}{y}_{2}}{({m}^{2}+1)({y}_{1}{y}_{2})^{2}}$=$\frac{(2{t}^{2}+24){m}^{2}+72-6{t}^{2}}{({t}^{2}-12){m}^{2}+({t}^{2}-12)^{2}}$,
當2t2+24=72-6t2,即t2=6時,$\frac{1}{丨MA{丨}^{2}}$+$\frac{1}{丨MB{丨}^{2}}$=1,
此時M的坐標為(±$\sqrt{6}$,0),
綜上,存在點M(±$\sqrt{6}$,0),使得$\frac{1}{丨MA{丨}^{2}}$+$\frac{1}{丨MB{丨}^{2}}$=1,
(ii)由(i)可知:t2=6,則丨AB丨=$\sqrt{1+{m}^{2}}$丨y1-y2丨=$\sqrt{1+{m}^{2}}$$\frac{2\sqrt{6}\sqrt{2{m}^{2}+3}}{{m}^{2}+3}$,
原點O直線AB的距離d=$\frac{\sqrt{6}}{\sqrt{1+{m}^{2}}}$,S△ABQ=4×$\frac{1}{2}$×$\frac{丨AB丨}{2}$=$\frac{12\sqrt{2{m}^{2}+3}}{{m}^{2}+3}$,
令$\sqrt{2{m}^{2}+3}$=μ∈[$\sqrt{3}$,+∞),則S△ABQ=$\frac{24μ}{{u}^{2}+3}$=$\frac{24}{μ+\frac{3}{μ}}$≤$\frac{24}{2\sqrt{3}}$=4$\sqrt{3}$,
當且僅當t=$\sqrt{3}$,即m=0取最大值,
∴△ABQ面積的最大值4$\sqrt{3}$.

點評 本題考查橢圓的標準方程,直線與橢圓的位置關(guān)系,考查韋達定理,弦長公式,考查換元法的應(yīng)用,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=x3-2x2+x(x>0).
(1)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)G(a)=$\frac{F(a)}{a}$的最小值;
(2)設(shè)函數(shù)g(x)=1nx-(2x2-4x-t)(t為常數(shù)),若使g(x)-m≤x≤f(x)-m在(0,+∞)上恒成立的實數(shù)m有且只有一個,求實數(shù)m和t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f'(x)是函數(shù)f(x)(x∈R且x≠0)的導(dǎo)函數(shù),當x>0時,xf'(x)-f(x)<0,記a=$\frac{{f({{2^{0.2}}})}}{{{2^{0.2}}}},b=\frac{{f({{{0.2}^2}})}}{{{{0.2}^2}}},c=\frac{{f({{{log}_2}5})}}{{{{log}_2}5}}$,則(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓E:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1,求E的焦距、離心率和通徑的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.平面直角坐標系xOy中,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,且點$(\sqrt{3},\frac{1}{2})$在橢圓C上.橢圓C的左頂點為A.
(1)求橢圓C的方程;
(2)過點A作直線l與橢圓C交于另一點B.若直線l交y軸于點C,且OC=BC,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在某次試驗中,有兩個試驗數(shù)據(jù)x,y統(tǒng)計的結(jié)果如下面的表格
序號xyx2xy
11212
22346
334912
4441616
5552525
15185561
(1)求出y對x的回歸直線方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中回歸系數(shù)$\stackrel{∧}{a}$,$\stackrel{∧}{b}$;
(2)估計當x為10時$\stackrel{∧}{y}$的值是多少?
(附:在線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{{{\sum_{i=1}^n{x_i^2-n\overline x}}^2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=ex-ax-1
(1)若函數(shù)f(x)在R上單調(diào)遞增,求α的取值范圍;
(2)當α>0時,設(shè)函數(shù)f(x)的最小值為g(a),求證:g(a)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=lg($\sqrt{1+{x}^{2}}$-x)-1,則f(ln2)+f(ln$\frac{1}{2}$)=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一盒中放有的黑球和白球,其中黑球4個,白球5個.
(Ⅰ)從盒中同時摸出兩個球,求兩球顏色恰好相同的概率.
(Ⅱ)從盒中摸出一個球,放回后再摸出一個球,求兩球顏色恰好不同的概率.
(Ⅲ)從盒中不放回的每次摸一球,若取到白球則停止摸球,求取到第三次時停止摸球的概率.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国产欧美日本 | 国产一区二区三区久久 | 久久久精品高清 | 欧美激情视频一区二区三区在线播放 | 中文字幕高清在线 | 国产激情久久久久久 | 久草99| 久久精品网 | 婷婷激情综合 | 热re99久久精品国99热线看 | 最新中文字幕在线观看 | 色综合国产 | 香蕉国产精品 | 亚洲午夜免费视频 | www.国产高清 | 免费黄色成人 | 亚洲精品视频免费观看 | 91综合网| 九九综合九九 | 日韩免费在线视频 | 亚洲国产精品区 | 午夜一级| 91在线观看视频 | 天天舔天天干 | 91在线一区 | 91在线导航| 午夜精品久久久久久久久久久久久 | 欧美精品区| 国产免费av大片 | 国产一区二区精品在线 | 国产在线a视频 | 一区二区三区精品视频 | 久久噜噜噜精品国产亚洲综合 | 草草网 | 狠狠久久| 狠狠爱www人成狠狠爱综合网 | 国产一区二区三区久久久 | 免费在线观看一级毛片 | 人人超碰在线 | 最近免费中文字幕大全免费版视频 | 久久免费精品 |