日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
5.重慶一中開展支教活動,有五名教師被隨機的分到49中學、璧山中學、禮嘉中學,且每個中學至少一名教師,
(1)求共有多少種分派方法;(用數字作答)
(2)求璧山中學分到兩名教師的概率;
(3)設隨機變量X為這五名教師分到璧山中學的人數,求X的分布列和期望.

分析 (1)利用分類討論思想和排列組合知識能求出共有多少種分派方法.
(2)設璧山中學分到兩名教師為事件A,利用等可能事件概率計算公式能求出璧山中學分到兩名教師的概率.
(3)由題意知X的可有取值為1,2,3,分別求出相應的概率,由此能求出X的分布列和E(X).

解答 解:(1)∵有五名教師被隨機的分到49中學、璧山中學、禮嘉中學,且每個中學至少一名教師,
∴共有N=$\frac{1}{2}{C}_{5}^{2}{C}_{3}^{2}{A}_{3}^{3}+{C}_{5}^{3}{A}_{3}^{3}$=150種分派方法.
(2)設璧山中學分到兩名教師為事件A,
則P(A)=$\frac{{C}_{5}^{2}{C}_{3}^{2}{A}_{2}^{2}}{\frac{1}{2}{C}_{5}^{2}{C}_{3}^{2}{A}_{3}^{3}+{C}_{3}^{3}{A}_{3}^{3}}$=$\frac{2}{5}$.
(3)由題意知X的可有取值為1,2,3,
P(X=1)=$\frac{{C}_{5}^{1}({C}_{4}^{2}{C}_{2}^{2}+{C}_{4}^{3}{A}_{2}^{2})}{\frac{1}{2}{C}_{5}^{2}{C}_{3}^{2}{A}_{3}^{3}+{C}_{5}^{3}{A}_{3}^{3}}$=$\frac{7}{15}$,
P(X=2)=$\frac{2}{5}$,
P(X=3)=$\frac{{C}_{5}^{2}{A}_{2}^{2}}{\frac{1}{2}{C}_{5}^{2}{C}_{3}^{2}{A}_{3}^{3}+{C}_{5}^{3}{A}_{3}^{3}}$=$\frac{2}{15}$,
∴X的分布列為:

 X 1 2
 P $\frac{7}{15}$ $\frac{2}{5}$ $\frac{2}{15}$
∴E(X)=$1×\frac{7}{15}+2×\frac{2}{5}+3×\frac{2}{15}$=$\frac{5}{3}$.

點評 本題考查概率的求法,考查離散型隨機變量的分布列和數學期望的求法,是中檔題,解題時要認真審題,注意排列組合知識的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

5.若函數f(x)是定義域為R的奇函數,且當x>0時,f(x)=cosx-sinx.
(1)求f(0);
(2)當x<0時,求f(x)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知函數f(x)=ex
(1)若直線y=kx+1與y=f(x)關于y=x對稱的圖象相切,求k的值;
(2)設x>0,討論y=f(x)與y=mx2(m>0)交點的個數;
(3)設a<b,比較$\frac{f(a)+f(b)}{2}$與$\frac{f(b)-f(a)}{b-a}$的大小,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知函數$f(x)=\left\{{\begin{array}{l}{-{x^2}+2x,x≥0}\\{-3x,x<0}\end{array}}\right.$.
(Ⅰ)畫出f(x)的圖象(無需列表),并寫出函數的單調遞減區間;
(Ⅱ)若x∈[0,a],求f(x)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.設a,b∈R,集合A中含有0,b,$\frac{a}$三個元素,集合B中含有1,a,a+b三個元素,且集合A與集合B相等,則a+2b=( 。
A.1B.0C.-1D.不確定

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.隨機變量X的概率分布列如下表如示,且$P(X=n)=\left\{\begin{array}{l}\frac{7}{10},n=1\\ \frac{1}{n(n+1)},n≥2且n∈z\end{array}\right.$,
XX1X2X3Xn
Pp1p2p3pn
(Ⅰ)由分布列的性質試求n的值,并求隨機變量X的分布列與數學期望;
(Ⅱ)一個盒子里裝有標號為1,2,…,n且質地相同的標簽若干張,從中任取1張標簽所得的標號為隨機變量X.現有放回的從中每次抽取一張,共抽取三次,求恰好2次取得標簽的標號不小于3的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.四棱錐E-ABCD中,底面ABCD是正方形,AC與BD交于點O,EC⊥底面ABCD,F為BE中點.CE=2,AB=2.
(1)求證:DE∥平面ACF;
(2)求三棱錐E-ACF的體積.
(3)求二面角B-CD-F的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.下列有關命題的說法正確的是(  )
A.命題“若x2=4,則x=2”的否命題為“若x2=4,則x≠2”
B.命題“?x∈R,x2+2x-1<0”的否定是“?x∈R,x2+2x-1>0”
C.命題“若x=y,則sinx=siny”的逆否命題為假命題
D.若“p或q”為真命題,則p,q至少有一個為真命題

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.在n元數集S={a1,a2,…,an}中,設x(S)=$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$,若S的非空子集A滿足x(A)=x(S),則稱A是集合S的一個“平均子集”,并記數集S的k元“平均子集”的個數為fs(k).已知集合S={1,2,3,4,5,6,7,8,9},T={-4,-3,-2,-1,0,1,2,3,4},則下列說法錯誤的是( 。
A.fs(9)=fT(1)B.fs(8)=fT(1)C.fs(6)=fT(4)D.fs(5)=fT(4)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品美女久久久久图片 | 成人一区在线观看 | 国产精彩视频 | 国产无遮挡呻吟吸乳视频 | 国产成人精品一区二区三区四区 | 中文字幕日韩久久 | 国产美女在线观看精品 | 国产精品一区二区三区免费观看 | 天天摸夜夜摸爽爽狠狠婷婷97 | 在线视频这里只有精品 | 亚洲精品视频免费 | 国产美女精品人人做人人爽 | 精品国产一区二区三区性色av | 伊人伊人伊人 | 成人在线视频观看 | 黄桃av| 亚洲欧洲精品成人久久奇米网 | 六月婷婷综合 | 久久亚洲精品国产亚洲老地址 | 天堂av中文在线 | 久久精品国产免费 | 91视频网址 | 国产精品理论电影 | 欧美自拍视频 | 国产精品久久久久久久久久久新郎 | 99爱视频 | 精品一区二区三区在线观看 | 久久久久久久久久97 | 99久久久免费视频 | 手机在线观看毛片 | 四虎影视在线 | 久久久久久久久久久九 | 中文字幕日韩一区 | 欧美成人精品一区二区男人看 | 99re热精品视频| 毛片网子 | 最新国产精品精品视频 | 国产精品91久久久久 | 一区二区免费 | 久久久免费看 | 欧美a级成人淫片免费看 |