A. | x=$\frac{π}{24}$ | B. | x=$\frac{5π}{12}$ | C. | x=$\frac{π}{2}$ | D. | x=$\frac{π}{12}$ |
分析 由條件根據函數y=Asin(ωx+φ)的圖象變換規律可得得函數圖象對應的函數解析式為y=g(x)=2sin(4x+$\frac{π}{6}$),再利用正弦函數的圖象的對稱性求得所得函數圖象的一條對稱軸方程.
解答 解:函數f(x)=2sin(2x+$\frac{π}{6}$),
將f(x)圖象上每個點的橫坐標縮短為原來的一半之后成為
函數y=g(x)=2sin(4x+$\frac{π}{6}$).
令4x+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,可解得函數對稱軸方程為:x=$\frac{1}{4}$kπ+$\frac{π}{12}$,k∈Z,
當k=0時,x=$\frac{π}{12}$是函數的一條對稱軸.
故選:D.
點評 本題主要考查函數y=Asin(ωx+φ)的圖象變換規律,正弦函數的圖象的對稱性,屬于基礎題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (2,$\frac{8}{3}$) | B. | ($\frac{2}{3}$,2) | C. | (2,$\frac{10}{3}$) | D. | ($\frac{4}{3}$,$\frac{8}{3}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|-1≤x≤1} | B. | {x|0≤x≤1} | C. | {x|-1≤x<1} | D. | {x|0≤x<1} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com