分析 (1)由一元二次不等式的解法求出x的范圍,由條件求出an;
(2)由(1)化簡bn,利用錯位相減法和等比數列的前n項和公式求出Sn;
(3)由(1)化簡f(n)=$\frac{1}{{a}_{n}+1}$+$\frac{1}{{a}_{n}+2}$+…+$\frac{1}{{a}_{n}+n}$,求出f(n+1)后化簡f(n+1)-f(n)判斷出符號,判斷出f(n)的單調性求出f(n)的最小值,由放縮法證明f(n)<1成立.
解答 解:(1)由x2-x<nx(n∈N•)得,
x[x-(n+1)]<0,解得0<x<n+1,
∴不等式x2-x<nx的解集中的整數的個數是n,
∴an=n;
(2)由(1)得,bn=$\frac{{a}_{n}}{{2}^{n}}$=$\frac{n}{{2}^{n}}$,
∴Sn=$\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}+…+\frac{n}{{2}^{n}}$,①
2Sn=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}+\frac{3}{{2}^{4}}+…+\frac{n}{{2}^{n+1}}$,②
①-②得,-Sn=$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}-\frac{n}{{2}^{n+1}}$
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}-\frac{n}{{2}^{n+1}}$=$1-\frac{n+2}{{2}^{n+1}}$,
則Sn=$\frac{n+2}{{2}^{n+1}}-1$;
證明:(3)由(1)得,f(n)=$\frac{1}{{a}_{n}+1}$+$\frac{1}{{a}_{n}+2}$+…+$\frac{1}{{a}_{n}+n}$
=$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{n+n}$
∴f(n+1)=$\frac{1}{n+2}+\frac{1}{n+3}+…+\frac{1}{2n}+\frac{1}{2n+1}+\frac{1}{2n+2}$
∴f(n+1)-f(n)=$-\frac{1}{n+1}+\frac{1}{2n+1}+\frac{1}{2n+2}$
=$\frac{1}{2n+1}-\frac{1}{2n+2}$>0,即f(n+1)>f(n),
∴f(n)隨著n的增大而增大(n≥2且n∈N•),
則f(n)的最小值是f(2)=$\frac{1}{3}+\frac{1}{4}$=$\frac{7}{12}$,
∵f(n)=$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{n+n}$
<$\frac{1}{n}+\frac{1}{n}+…+\frac{1}{n}$=$\frac{n}{n}$=1,
綜上可得,對n≥2且n∈N•,恒有$\frac{7}{12}$≤f(n)<1.
點評 本題考查等比數列的前n項和公式,利用作差法判斷數列的單調性,一元二次不等式的解法,以及錯位相減法和求數列的前n項和,考查放縮法在證明不等式中的應用,化簡、變形能力.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 向右平移$\frac{π}{8}$ | B. | 向左平移$\frac{π}{8}$ | C. | 向右平移$\frac{π}{4}$ | D. | 向左平移$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com