已知橢圓E:的焦點坐標為
(
),點M(
,
)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設Q(1,0),過Q點引直線與橢圓E交于
兩點,求線段
中點
的軌跡方程;
科目:高中數學 來源: 題型:解答題
(本小題共12分)
如圖,已知直線l與拋物線相切于點P(2,1),且與x軸交于點A,O為坐標原點,
定點B的坐標為(2,0).
(1)若動點M滿足,求點M的軌跡C;
(2)若過點B的直線l′(斜率不等于零)與(I)中的軌跡C交于不同的兩點E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知點在橢圓C:
上,且橢圓C的離心率
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點作直線交橢圓C于點A.B.△ABQ的垂心為T,是否存在實數m ,使得垂心T在y軸上.若存在,求出實數m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知直線經過橢圓
的左頂點A和上頂點D,橢圓
的右頂點為
,點
和橢圓
上位于
軸上方的動點,直線,
與直線
分別交于
兩點。
(I)求橢圓的方程;
(Ⅱ)求線段MN的長度的最小值;
(Ⅲ)當線段MN的長度最小時,在橢圓上是否存在這
樣的點,使得
的面積為
?若存在,確定點
的個數,若不存在,說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知三點,曲線
上任一點
滿足
=
(1) 求曲線的方程;
(2) 設是(1)中所求曲線
上的動點,定點
,線段
的垂直平分線與
軸交于點
,求實數
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
在平面直角坐標系中,點
到兩定點F1
和F2
的距離之和為
,設點
的軌跡是曲線
.(1)求曲線
的方程; (2)若直線
與曲線
相交于不同兩點
、
(
、
不是曲線
和坐標軸的交點),以
為直徑的圓過點
,試判斷直線
是否經過一定點,若是,求出定點坐標;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
已知橢圓的離心率為
,短軸一個端點到右焦點的距離為
.
(1)求橢圓的方程;
(2)設直線與橢圓
交于
兩點,坐標原點
到直線
的距離為
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
拋物線的頂點在原點,焦點在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點,且。
(1) 求拋物線方程;
(2) 在x軸上是否存在一點C,使得三角形ABC是正三角形? 若存在,求出點C的坐標,若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com