(本小題滿分12分)已知直線經過橢圓
的左頂點A和上頂點D,橢圓
的右頂點為
,點
和橢圓
上位于
軸上方的動點,直線,
與直線
分別交于
兩點。
(I)求橢圓的方程;
(Ⅱ)求線段MN的長度的最小值;
(Ⅲ)當線段MN的長度最小時,在橢圓上是否存在這
樣的點,使得
的面積為
?若存在,確定點
的個數,若不存在,說明理由
科目:高中數學 來源: 題型:解答題
直角坐標平面上,為原點,
為動點,
,
. 過點
作
軸于
,過
作
軸于點
,
. 記點
的軌跡為曲線
,
點、
,過點
作直線
交曲線
于兩個不同的點
、
(點
在
與
之間).
(1)求曲線的方程;
(2)是否存在直線,使得
,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知拋物線C1:y2=4x的焦點與橢圓C2:的右焦點F2重合,F1是橢圓的左焦點;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點C在拋物線y2=4x上運動,求
ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個公共點,且∠PF1F2=,∠PF2F1=
,求cos
的值及
PF1F2的面積。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓E:的焦點坐標為
(
),點M(
,
)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設Q(1,0),過Q點引直線與橢圓E交于
兩點,求線段
中點
的軌跡方程;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓,橢圓
以
的長軸為短軸,且與
有相同的離心率.
(1)求橢圓的方程;
(2)設O為坐標原點,點A,B分別在橢圓和
上,
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
已知動圓P(圓心為點P)過定點A(1,0),且與直線相切。記動點P的軌跡為C。
(Ⅰ)求軌跡C的方程;
(Ⅱ)設過點P的直線l與曲線C相切,且與直線相交于點Q。試研究:在x軸上是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標;若不存在,說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com