(本小題滿分12分)
拋物線的頂點在原點,焦點在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點,且。
(1) 求拋物線方程;
(2) 在x軸上是否存在一點C,使得三角形ABC是正三角形? 若存在,求出點C的坐標,若不存在,說明理由.
科目:高中數學 來源: 題型:解答題
已知橢圓E:的焦點坐標為
(
),點M(
,
)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設Q(1,0),過Q點引直線與橢圓E交于
兩點,求線段
中點
的軌跡方程;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
在平面直角坐標系xOy中,拋物線C的頂點在原點,經過點A(2,2),其焦點F在x軸上.
(1)求拋物線C的標準方程;
(2)設直線l是拋物線的準線,求證:以AB為直徑的圓與準線l相切.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
已知動圓P(圓心為點P)過定點A(1,0),且與直線相切。記動點P的軌跡為C。
(Ⅰ)求軌跡C的方程;
(Ⅱ)設過點P的直線l與曲線C相切,且與直線相交于點Q。試研究:在x軸上是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題13分)設橢圓的左右焦點分別為
,
,上頂點為
,過點
與
垂直的直線交
軸負半軸于
點,且
是
的中點.
(1)求橢圓的離心率;
(2)若過點的圓恰好與直線
相切,求橢圓
的方程;
(3)在(2)的條件下過右焦點作斜率為
的直線
與橢圓相交于
兩點,在
軸上是否存在點
使得以
為鄰邊的平行四邊形為菱形,如果存在,求出
的取值范圍,如果不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
如圖,已知橢圓的焦點為
、
,離心率為
,過點
的直線
交橢圓
于
、
兩點.
(1)求橢圓的方程;
(2)①求直線的斜率
的取值范圍;
②在直線的斜率
不斷變化過程中,探究
和
是否總相等?若相等,請給出證明,若不相等,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)已知橢圓經過點
,且其右焦點與拋物線
的焦點F重合.
(Ⅰ)求橢圓的方程;
(II)直線經過點
與橢圓
相交于A、B兩點,與拋物線
相交于C、D兩點.求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com