(本題13分)設橢圓的左右焦點分別為
,
,上頂點為
,過點
與
垂直的直線交
軸負半軸于
點,且
是
的中點.
(1)求橢圓的離心率;
(2)若過點的圓恰好與直線
相切,求橢圓
的方程;
(3)在(2)的條件下過右焦點作斜率為
的直線
與橢圓相交于
兩點,在
軸上是否存在點
使得以
為鄰邊的平行四邊形為菱形,如果存在,求出
的取值范圍,如果不存在,說明理由。
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知三點,曲線
上任一點
滿足
=
(1) 求曲線的方程;
(2) 設是(1)中所求曲線
上的動點,定點
,線段
的垂直平分線與
軸交于點
,求實數
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
拋物線頂點在坐標原點,焦點與橢圓的右焦點
重合,過點
斜率為
的直線與拋物線交于
,
兩點.
(Ⅰ)求拋物線的方程;
(Ⅱ)求△的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知直線l1:4x:-3y+6=0和直線l2x=-p/2:.若拋物線C:y2=2px上的點到直線l1和直線l2的距離之和的最小值為2.
(I )求拋物線C的方程;
(II)若以拋物線上任意一點M為切點的直線l與直線l2交于點N,試問在x軸上是否存 在定點Q,使Q點在以MN為直徑的圓上,若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
拋物線的頂點在原點,焦點在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點,且。
(1) 求拋物線方程;
(2) 在x軸上是否存在一點C,使得三角形ABC是正三角形? 若存在,求出點C的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓方程為
,左、右焦點分別是
,若橢圓
上的點
到
的距離和等于
.
(Ⅰ)寫出橢圓的方程和焦點坐標;
(Ⅱ)設點是橢圓
的動點,求線段
中點
的軌跡方程;
(Ⅲ)直線過定點
,且與橢圓
交于不同的兩點
,若
為銳角(
為坐標原點),求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:+
=1(a>b>0)的一個焦點是F(1,0),且離心率為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設經過點F的直線交橢圓C于M,N兩點,線段MN的垂直平分線交y軸于點P(0,y0),求y0的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線上橫坐標為4的點到焦點的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設直線與拋物線C交于兩點
,
,且
(a為正常數).過弦AB的中點M作平行于x軸的直線交拋物線C于點D,連結AD、BD得到
.
(i)求實數a,b,k滿足的等量關系;
(ii)的面積是否為定值?若為定值,求出此定值;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題12分)
已知橢圓的右焦點為F,上頂點為A,P為C
上任一點,MN是圓
的一條直徑,若與AF平行且在y軸上的截距為
的直線
恰好與圓
相切.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com