已知橢圓C:+
=1(a>b>0)的一個焦點是F(1,0),且離心率為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設經過點F的直線交橢圓C于M,N兩點,線段MN的垂直平分線交y軸于點P(0,y0),求y0的取值范圍.
(1) +
=1. (2)
解析試題分析:解:(Ⅰ)設橢圓C的半焦距是c.依題意,得c=1.
因為橢圓C的離心率為,
所以a=2c=2,b2=a2-c2=3. 2分
故橢圓C的方程為+
=1. 3分
(Ⅱ)當MN⊥x軸時,顯然y0=0. 4分
當MN與x軸不垂直時,可設直線MN的方程為
y=k(x-1)(k≠0). 5分
由
消去y并整理得(3+4k2)x2-8k2x+4(k2-3)=0. 6分
設M(x1,y1),N(x2,y2),線段MN的中點為Q(x3,y3),
則x1+x2=.
所以x3==
,y3=k(x3-1)=
. 8分
線段MN的垂直平分線的方程為
y+=-
.
在上述方程中,令x=0,得y0==
. 9分
當k<0時,+4k≤-4
;當k>0時,
+4k≥4
.
所以-≤y0<0或0<y0≤
. 11分
綜上,y0的取值范圍是. 12分
考點:本試題考查了橢圓的知識。
點評:對于橢圓方程的求解主要是根據其性質滿足的的a,b,c的關系式來解得,同時對于直線與橢圓的相交問題,一般采用聯立方程組的思想,結合韋達定理和判別式來分析參數的范圍等等,或者研究最值,屬于中檔題。
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖,在平面直角坐標系中,橢圓
的焦距為2,且過點
.
求橢圓的方程;
若點,
分別是橢圓
的左、右頂點,直線
經過點
且垂直于
軸,點
是橢圓上異于
,
的任意一點,直線
交
于點
(。┰O直線的斜率為
直線
的斜率為
,求證:
為定值;
(ⅱ)設過點垂直于
的直線為
.求證:直線
過定點,并求出定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
在平面直角坐標系xOy中,拋物線C的頂點在原點,經過點A(2,2),其焦點F在x軸上.
(1)求拋物線C的標準方程;
(2)設直線l是拋物線的準線,求證:以AB為直徑的圓與準線l相切.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題13分)設橢圓的左右焦點分別為
,
,上頂點為
,過點
與
垂直的直線交
軸負半軸于
點,且
是
的中點.
(1)求橢圓的離心率;
(2)若過點的圓恰好與直線
相切,求橢圓
的方程;
(3)在(2)的條件下過右焦點作斜率為
的直線
與橢圓相交于
兩點,在
軸上是否存在點
使得以
為鄰邊的平行四邊形為菱形,如果存在,求出
的取值范圍,如果不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
如圖,已知橢圓的焦點為
、
,離心率為
,過點
的直線
交橢圓
于
、
兩點.
(1)求橢圓的方程;
(2)①求直線的斜率
的取值范圍;
②在直線的斜率
不斷變化過程中,探究
和
是否總相等?若相等,請給出證明,若不相等,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,且過點
,
為其右焦點.
(1)求橢圓的方程;
(2)設過點的直線
與橢圓相交于
、
兩點(點
在
兩點之間),若
與
的面積相等,試求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分10分) 已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,且過
,設點
.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段
中點
的軌跡方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題16分)設雙曲線:的焦點為F1,F2.離心率為2。
(1)求此雙曲線漸近線L1,L2的方程;
(2)若A,B分別為L1,L2上的動點,且2,求線段AB中點M的軌跡方程,并說明軌跡是什么曲線。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com