已知橢圓方程為
,左、右焦點分別是
,若橢圓
上的點
到
的距離和等于
.
(Ⅰ)寫出橢圓的方程和焦點坐標;
(Ⅱ)設點是橢圓
的動點,求線段
中點
的軌跡方程;
(Ⅲ)直線過定點
,且與橢圓
交于不同的兩點
,若
為銳角(
為坐標原點),求直線
的斜率
的取值范圍.
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的離心率
,過點
和
的直線與原點的距離為
。⑴求橢圓的方程;⑵已知定點
,若直線
與橢圓交于
兩點,問:是否存在
的值,使以
為直徑的圓過
點?請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
已知橢圓中心在原點,焦點在x軸上,離心率,過橢圓的右焦點且垂直于長軸的弦長為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)已知直線與橢圓相交于
兩點,且坐標原點
到直線
的距離為
,
的大小是否為定值?若是求出該定值,不是說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分) 已知直線L:y=x+1與曲線C:交于不同的兩點A,B;O為坐標原點。
(1)若,試探究在曲線C上僅存在幾個點到直線L的距離恰為
?并說明理由;
(2)若,且a>b,
,試求曲線C的離心率e的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題13分)設橢圓的左右焦點分別為
,
,上頂點為
,過點
與
垂直的直線交
軸負半軸于
點,且
是
的中點.
(1)求橢圓的離心率;
(2)若過點的圓恰好與直線
相切,求橢圓
的方程;
(3)在(2)的條件下過右焦點作斜率為
的直線
與橢圓相交于
兩點,在
軸上是否存在點
使得以
為鄰邊的平行四邊形為菱形,如果存在,求出
的取值范圍,如果不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)已知中心在坐標原點O,焦點在軸上,長軸長是短軸長的2倍的橢圓經過點M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線平行于
,且與橢圓交于A、B兩個不同點.
(ⅰ)若為鈍角,求直線
在
軸上的截距m的取值范圍;
(ⅱ)求證直線MA、MB與x軸圍成的三角形總是等腰三角形.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,且過點
,
為其右焦點.
(1)求橢圓的方程;
(2)設過點的直線
與橢圓相交于
、
兩點(點
在
兩點之間),若
與
的面積相等,試求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知曲線所圍成的封閉圖形的面積為
,曲線
的內切圓半徑為
.記
為以曲線
與坐標軸的交點為頂點的橢圓.
(1)求橢圓的標準方程;
(2)設是過橢圓
中心的任意弦,
是線段
的垂直平分線.
是
上異于橢圓中心的點.
(i)若(
為坐標原點),當點
在橢圓
上運動時,求點
的軌跡方程;
(ii)若是
與橢圓
的交點,求
的面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,斜率為1的直線過拋物線的焦點F,與拋物線交于兩點A,B,
(1)若|AB|=8,求拋物線的方程;
(2)設C為拋物線弧AB上的動點(不包括A,B兩點),求的面積S的最大值;
(3)設P是拋物線上異于A,B的任意一點,直線PA,PB分別交拋物線的準線于M,N兩點,證明M,N兩點的縱坐標之積為定值(僅與p有關)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com