日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
17.設O為坐標原點,動點M在橢圓C:$\frac{{x}^{2}}{2}$+y2=1上,過M作x軸的垂線,垂足為N,點P滿足$\overrightarrow{NP}$=$\sqrt{2}$$\overrightarrow{NM}$.
(1)求點P的軌跡方程;
(2)設點Q在直線x=-3上,且$\overrightarrow{OP}$•$\overrightarrow{PQ}$=1.證明:過點P且垂直于OQ的直線l過C的左焦點F.

分析 (1)設M(x0,y0),由題意可得N(x0,0),設P(x,y),運用向量的坐標運算,結合M滿足橢圓方程,化簡整理可得P的軌跡方程;
(2)設Q(-3,m),P($\sqrt{2}$cosα,$\sqrt{2}$sinα),(0≤α<2π),運用向量的數量積的坐標表示,可得m,即有Q的坐標,求得橢圓的左焦點坐標,求得OQ,PF的斜率,由兩直線垂直的條件:斜率之積為-1,即可得證.

解答 解:(1)設M(x0,y0),由題意可得N(x0,0),
設P(x,y),由點P滿足$\overrightarrow{NP}$=$\sqrt{2}$$\overrightarrow{NM}$.
可得(x-x0,y)=$\sqrt{2}$(0,y0),
可得x-x0=0,y=$\sqrt{2}$y0,
即有x0=x,y0=$\frac{y}{\sqrt{2}}$,
代入橢圓方程$\frac{{x}^{2}}{2}$+y2=1,可得$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{2}$=1,
即有點P的軌跡方程為圓x2+y2=2;
(2)證明:設Q(-3,m),P($\sqrt{2}$cosα,$\sqrt{2}$sinα),(0≤α<2π),
$\overrightarrow{OP}$•$\overrightarrow{PQ}$=1,可得($\sqrt{2}$cosα,$\sqrt{2}$sinα)•(-3-$\sqrt{2}$cosα,m-$\sqrt{2}$sinα)=1,
即為-3$\sqrt{2}$cosα-2cos2α+$\sqrt{2}$msinα-2sin2α=1,
解得m=$\frac{3(1+\sqrt{2}cosα)}{\sqrt{2}sinα}$,
即有Q(-3,$\frac{3(1+\sqrt{2}cosα)}{\sqrt{2}sinα}$),
橢圓$\frac{{x}^{2}}{2}$+y2=1的左焦點F(-1,0),
由$\overrightarrow{PF}$•$\overrightarrow{OQ}$=(-1-$\sqrt{2}$cosα,-$\sqrt{2}$sinα)•(-3,$\frac{3(1+\sqrt{2}cosα)}{\sqrt{2}sinα}$)
=3+3$\sqrt{2}$cosα-3(1+$\sqrt{2}$cosα)=0.
可得過點P且垂直于OQ的直線l過C的左焦點F.

點評 本題考查軌跡方程的求法,注意運用坐標轉移法和向量的加減運算,考查圓的參數方程的運用和直線的斜率公式,以及向量的數量積的坐標表示和兩直線垂直的條件:斜率之積為-1,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

3.函數f(x)=$\frac{1}{5}$sin(x+$\frac{π}{3}$)+cos(x-$\frac{π}{6}$)的最大值為( 。
A.$\frac{6}{5}$B.1C.$\frac{3}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.設數列{an}滿足a1=2,an+1=2an+2n+1(n∈N*).
(1)若bn=$\frac{{a}_{n}}{{2}^{n}}$,證明:數列{bn}為等差數列,并求出數列{bn}的通項公式;
(2)若cn=an+bn,求數列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.過直線x-y-2=0上的動點P作拋物線y=$\frac{1}{2}$x2的切線,切點分別為M,N,則直線MN過點(1,2).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.如圖,已知平面四邊形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC與BD交于點O,記I1=$\overrightarrow{OA}$•$\overrightarrow{OB}$,I2=$\overrightarrow{OB}$•$\overrightarrow{OC}$,I3=$\overrightarrow{OC}$•$\overrightarrow{OD}$,則( 。
A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.(1+$\frac{1}{x^2}$)(1+x)6展開式中x2的系數為(  )
A.15B.20C.30D.35

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.設函數y=$\sqrt{4-{x}^{2}}$的定義域為A,函數y=ln(1-x)的定義域為B,則A∩B=( 。
A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知函數f(x)=x2+2cosx,g(x)=ex(cosx-sinx+2x-2),其中e≈2.71828…是自然對數的底數.
(Ⅰ)求曲線y=f(x)在點(π,f(π))處的切線方程;
(Ⅱ)令h(x)=g (x)-a f(x)(a∈R),討論h(x)的單調性并判斷有無極值,有極值時求出極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知定點F(2,0),定直線l:x=$\frac{1}{2}$,動點P與點F的距離是它到直線l的距離的2倍,設點P的軌跡為E.
(1)求E的方程;
(2)若F1(-2,0),直線l1:y=x+t,t∈(-1,1)與曲線E交于C、D兩點,求四邊形F1CFD面積的最小值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成人免费毛片aaaaaa片 | 欧美色影院| www.亚洲一区| 成人一区二区在线 | 97香蕉久久国产超碰青草软件 | 在线播放av片 | 国产午夜精品久久久 | 日韩午夜影院 | 日本天堂在线观看 | 99精品全国免费观看视频软件 | 天天拍天天操 | 中文字幕在线观看第一页 | 成人免费高清 | 网色| 中文字幕第一页在线 | 成人a网| 天天久久| 欧美大片免费高清观看 | 一区二区三区在线 | 欧 | 狠狠久久 | 伊人免费在线观看高清版 | 午夜在线观看视频 | 国产精品一区二区三区99 | 黄色小视频免费观看 | 成人免费淫片aa视频免费 | 亚洲精品一区久久久久久 | 国产精品无码久久综合网 | 欧美日韩久久 | 国产一区二区视频在线播放 | 午夜a毛片 | 欧美综合色 | 中文字幕日本在线 | 日本中文字幕一区 | 国产一级免费 | 精品欧美 | 欧美日一区二区 | 日韩视频在线免费观看 | 久久亚洲一区二区 | 成人小视频在线观看 | 韩日电影在线观看 | 亚洲午夜激情网 |