日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
20.在△ABC中,內角A,B,C所對的邊分別為a,b,c,且BC邊上的高為$\frac{a}{2}$,則$\frac{c}{b}+\frac{b}{c}$最大值為(  )
A.2B.$\sqrt{2}$C.2$\sqrt{2}$D.4

分析 由已知可得:$\frac{1}{2}$a×$\frac{a}{2}$=$\frac{1}{2}bcsinA$,可得2bcsinA=a2=b2+c2-2bccosA,$\frac{b}{c}+\frac{c}{b}$=2sinA+2cosA=2$\sqrt{2}$sin$(A+\frac{π}{4})$,即可得出.

解答 解:由已知可得:$\frac{1}{2}$a×$\frac{a}{2}$=$\frac{1}{2}bcsinA$,可得2bcsinA=a2=b2+c2-2bccosA,
∴$\frac{b}{c}+\frac{c}{b}$=2sinA+2cosA=2$\sqrt{2}$sin$(A+\frac{π}{4})$≤2$\sqrt{2}$,當且僅當A=$\frac{π}{4}$時取等號.
故選:C.

點評 本題考查了三角形面積計算公式、余弦定理、三角函數的單調性與值域,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

10.已知函數y=log${\;}_{\frac{1}{2}}$(x2-4tx+4t2+t+$\frac{1}{t-1}$)(t∈R)的定義域R,且y的最大值為f(t),則f(t)的值域是$(-∞,lo{g}_{\frac{1}{2}}3]$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(k,-3),$\overrightarrow{c}$=(1,2),若($\overrightarrow{a}$-2$\overrightarrow{b}$)⊥$\overrightarrow{c}$,則|$\overrightarrow{b}$|=(  )
A.$3\sqrt{5}$B.3$\sqrt{2}$C.$2\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.已知等比數列{an}的前n項和為Sn,且S4=a5-a1
(1)求數列{an}的公比q的值;
(2)記bn=log2an+1,數列{bn}的前n項和為Tn,若T4=2b5,求數列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前9項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.如圖,圓O(O為坐標原點)與離心率為$\frac{{\sqrt{3}}}{2}$的橢圓T:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)相交于點M(0,1). 
(I)求橢圓T與圓O的方程;
(Ⅱ)過點M引兩條互相垂直的兩直線l1、l2與兩曲線分別交于點A、C與點B、D(均不重合).
①P為橢圓上任一點(異于點M),記點P到兩直線的距離分別為d1、d2,求d12+d22的最大值;
②若3$\overrightarrow{MA}•\overrightarrow{MC}=4\overrightarrow{MB}•\overrightarrow{MD}$,求l1與l2的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.質檢過后,某校為了解理科班學生的數學、物理學習情況,利用隨機數表法從全年級600名理科生抽取100名學生的成績進行統計分析,已知學生考號的后三位分別為000,001,002,…,599.
(1)若從隨機數表的第5行第7列的數開始向右讀,請依次寫出抽取的前7人的后三位考號;
(2)如果題(1)中隨機抽取到的7名同學的數學、物理成績(單位:分)對應如表:
數學成績9097105113127130135
物理成績105116120127135130140
從這7名同學中隨機抽取3名同學,記這3名同學中數學和物理成績均為優秀的人數為ζ,求ζ的分布列和數學期望(規定成績不低于120分的為優秀).附:(下面是摘自隨機數表的第4行到第6行)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,一個頂點在拋物線x2=4y的準線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設O為坐標原點,M,N為橢圓上的兩個不同的動點,直線OM,ON的斜率分別為k1和k2,是否存在常數P,當k1k2=P時△MON的面積為定值;若存在,求出P的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知拋物線Γ:y2=2px上一點M(3,m)到焦點的距離為4,動直線y=kx(k≠0)交拋物線Γ于坐標原點O和點A,交拋物線Γ的準線于點B,若動點P滿足$\overrightarrow{OP}=\overrightarrow{BA}$,動點P的軌跡C的方程為F(x,y)=0;
(1)求出拋物線Γ的標準方程;
(2)求動點P的軌跡方程F(x,y)=0;(不用指明范圍)
(3)以下給出曲線C的四個方面的性質,請你選擇其中的三個方面進行研究:①對稱性;②圖形范圍;③漸近線;④y>0時,寫出由F(x,y)=0確定的函數y=f(x)的單調區間,不需證明.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)與圓E:x2+(y-$\frac{3}{2}$)2=4相交于A,B兩點,且|AB|=2$\sqrt{3}$,圓E交y軸負半軸于點D.
(Ⅰ)求橢圓Γ的離心率;
(Ⅱ)過點D的直線交橢圓Γ于M,N兩點,點N與點N'關于y軸對稱,求證:直線MN'過定點,并求該定點坐標.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品久久免费 | 久久精品欧美一区 | 在线午夜视频 | 欧美色图一区二区三区 | 免费av播放 | 中文字幕有码在线 | 国产欧美一区二区三区视频在线观看 | 成人动漫在线观看 | 人人爽爽人人 | 中文字幕第8页 | 婷婷97| 国产成人三级一区二区在线观看一 | 黄色一级片免费看 | 亚洲一区二区在线视频 | 一级黄色免费 | 久久久久久九九九九 | 国产黄色免费网站 | 欧美中文字幕在线 | 91丨九色丨国产在线 | av黄色在线 | 国产视频一二区 | 日韩视频在线免费观看 | 一区二区在线 | 日韩欧美第一页 | 五月婷婷激情综合 | 亚洲精品乱码久久久久久 | 羞羞网站入口 | 欧美资源在线 | 涩涩在线 | 久久久久精 | 毛片网站大全 | 激情五月婷婷丁香 | 欧美日韩精品 | 成人福利视频在线观看 | 视频一区中文字幕 | 精品欧美一区二区精品久久 | 天天操夜夜 | 欧美国产综合 | 精品福利一区 | 亚洲17p| 亚洲成人中文字幕 |