日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

15.如圖,在四面體P-ABC,底面ABC是邊長為1的正三角形,AB⊥BP,點P在底面ABC上的射影為H,BH=$\frac{\sqrt{3}}{3}$,平面ACP與平面PBH所成的銳二面角的余弦值為$\frac{\sqrt{6}}{3}$.
(1)求證:PA⊥BC;
(2)求二面角C-AB-P的正切值.

分析 (1)過H作HD∥AB,推導(dǎo)出HB,HD,HP三直線兩兩垂直,分別以這三條直線為x,y,z軸,建立空間直角坐標系,利用向量法能證明PA⊥BC.
(2)由AB⊥BH,AB⊥BP,知∠PBH為二面角C-AB-P的平面角,由此能求出二面角C-AB-P的正切值.

解答 證明:(1)過H作HD∥AB,PH⊥底面ABC,AB?平面ABC,∴PH⊥AB,即AB⊥PH,
又AB⊥BP,BP∩PH=P,
∴AB⊥平面PBH,
∴AB⊥BH,∴HD⊥BH,
∴HB,HD,HP三直線兩兩垂直,分別以這三條直線為x,y,z軸,
建立如圖所示空間直角坐標系,則根據(jù)條件:
H(0,0,0),A($\frac{\sqrt{3}}{3}$,-1,0),B($\frac{\sqrt{3}}{3}$,0,0),C(-$\frac{\sqrt{3}}{6}$,-$\frac{1}{2}$,0),
設(shè)P(0,0,t),則$\overrightarrow{CA}$=($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$,0),$\overrightarrow{CP}$=($\frac{\sqrt{3}}{6}$,$\frac{1}{2}$,t),
設(shè)平面PAC的法向量$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{CA}=\frac{\sqrt{3}}{2}x-\frac{1}{2}y=0}\\{\overrightarrow{m}•\overrightarrow{CP}=\frac{\sqrt{3}}{6}x+\frac{1}{2}y+tz=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,$\sqrt{3}$,-$\frac{2\sqrt{3}}{3t}$),
平面PBH的法向量$\overrightarrow{n}$=(0,1,0),
∵平面ACP與平面PBH所成的銳二面角的余弦值為$\frac{\sqrt{6}}{3}$,
∴$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}=\frac{\sqrt{3}}{\sqrt{4+\frac{4}{3{t}^{2}}}}=\frac{\sqrt{3}}{3}$,
由t>0,解得t=$\frac{2\sqrt{15}}{15}$,
∴$\overrightarrow{PA}$=($\frac{\sqrt{3}}{3},-1,-\frac{2\sqrt{15}}{15}$),$\overrightarrow{CB}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,0),
∵$\overrightarrow{PA}•\overrightarrow{CB}$=$\frac{1}{2}-\frac{1}{2}+0=0$,
∴PA⊥BC.
解:(2)∵AB⊥BH,AB⊥BP,
∴∠PBH為二面角C-AB-P的平面角,
∴tan∠PBH=$\frac{PH}{BH}$=$\frac{\frac{2\sqrt{15}}{15}}{\frac{\sqrt{3}}{3}}$=$\frac{2\sqrt{5}}{5}$,
∴二面角C-AB-P的正切值為$\frac{2\sqrt{5}}{5}$.

點評 本題考查線線垂直的證明,考查二面角的正切值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.四棱錐S-ABCD中SA⊥底面ABCD,ABCD是正方形,且SA=AB,若點E是SA的中點.
(1)求證:SC∥平面EBD;
(2)求二面角S-CD-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)滿足f(-x)=f(x),f(x+1)=-$\frac{1}{f(x)}$,且當x∈[-1,0]時,f(x)=|x|.若在區(qū)間[-1,3]內(nèi),函數(shù)g(x)=f(x)-kx-k有4個零點,則實數(shù)k的取值范圍是(  )
A.$({0,\;\frac{1}{2}}]$B.$({0,\;\frac{1}{3}}]$C.$({0,\;\frac{1}{4}}]$D.$[{\frac{1}{4},\;\;\frac{1}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=cos2x-sin2x+sin2x(x∈R).
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ) 若θ為銳角,且f(θ+$\frac{π}{8}$)=$\frac{\sqrt{2}}{3}$,求sin2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知長方形的對角線長為1,求長方體的最大的表面積,并求出這時長方體的各棱長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)已知a,b,c均為正實數(shù),且a+b+c=1,求證:$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$≥9;
(2)已知a>b>c,且a+b+c=0,求證:$\sqrt{{b}^{2}-ac}$<$\sqrt{3}$a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)中,對定義域中的任一實數(shù)x均滿足f($\sqrt{2}x$)=2f(x)的是(  )
A.f(x)=log2xB.f(x)=x|x|C.f(x)=x2+1D.f(x)=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.記${\left.{\overline{{a_n}{a_{n-1}}{a_{n-2}}…{a_1}{a_0}}}\right|_m}$=a0+a1×m+…+an-1×mn-1+an×mn,其中n≤m,m、n均為正整數(shù),ak∈{0,1,2,…,m-1}(k=0,1,2,…,n)且an≠0;
(1)計算${\left.{\overline{2016}}\right|_7}$=699;
(2)設(shè)集合A(m,n)=$\left\{{{{\left.{\left.x\right|x=\overline{{a_n}{a_{n-1}}{a_{n-2}}…{a_1}{a_0}}}\right|}_m}}\right\}$,則A(m,n)中所有元素之和為$\frac{{({{m^{n+1}}+{m^n}-1})({{m^{n+1}}-{m^n}})}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖所示,點A、B、C是圓O上的三點,線段OC與線段AB交于圓內(nèi)一點M,若$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,(m>0,n>0),m+n=2,則∠AOB的最小值為(  )
A.$\frac{2π}{3}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>
主站蜘蛛池模板: 日本成人在线视频网站 | av一区二区三区 | 国产欧美精品区一区二区三区 | 精品亚洲一区二区三区 | 国产美女在线观看精品 | 色站综合 | 午夜免费一区二区播放 | 国产精品自拍视频 | av一区二区在线观看 | 日韩欧美视频在线 | av在线一区二区三区 | 尤物99av写真在线 | 久久久久久久久久国产 | 国产偷国产偷精品高清尤物 | 国产精品久久久久久久久免费丝袜 | 成人综合视频在线 | 麻豆专区一区二区三区四区五区 | 久热精品在线 | 亚洲专区在线播放 | 六月婷操| 一级黄色大片视频 | 国产精品婷婷久久久久 | 国产在线激情 | 日韩国产一区二区 | 欧美日韩成人影院 | 黑人性dh | 国产欧美日韩中文字幕 | 国产黄色免费视频 | yy6080久久伦理一区二区 | 91国自产区一二三区 | av黄色在线观看 | 二区精品| 中文字幕av高清 | 欧美成人精品一区二区男人看 | 欧美日韩亚洲一区 | 欧美日韩亚洲成人 | 免费的av网站 | 欧美一区二区三区在线看 | www.狠狠干 | 偷拍电影一区二区三区 | 99久久久国产精品 |