【題目】已知的兩個頂點
的坐標分別為
,
,且
所在直線的斜率之積等于
,記頂點
的軌跡為
.
(Ⅰ)求頂點的軌跡
的方程;
(Ⅱ)若直線與曲線
交于
兩點,點
在曲線
上,且
為
的重心(
為坐標原點),求證:
的面積為定值,并求出該定值.
科目:高中數學 來源: 題型:
【題目】雙曲線E:(
,
)的左、右焦點分別為
,
,已知點
為拋物線C:
的焦點,且到雙曲線E的一條漸近線的距離為
,又點P為雙曲線E上一點,滿足
.則
(1)雙曲線的標準方程為______;
(2)的內切圓半徑與外接圓半徑之比為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,
,
,
,
為棱
上的動點.
(1)若為
的中點,求證:
平面
;
(2)若平面平面ABC,且
是否存在點
,使二面角
的平面角的余弦值為
?若存在,求出
的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:極坐標與參數方程]
在直角坐標系中,曲線
的參數方程為
(
是參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的極坐標方程和曲線
的直角坐標方程;
(2)若射線
與曲線
交于
,
兩點,與曲線
交于
,
兩點,求
取最大值時
的值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校為增加應屆畢業生就業機會,每年根據應屆畢業生的綜合素質和學業成績對學生進行綜合評估,已知某年度參與評估的畢業生共有2000名.其評估成績近似的服從正態分布
.現隨機抽取了100名畢業生的評估成績作為樣本,并把樣本數據進行了分組,繪制了如下頻率分布直方圖:
(1)求樣本平均數和樣本方差
(同一組中的數據用該組區間的中點值作代表);
(2)若學校規定評估成績超過82.7分的畢業生可參加三家公司的面試.
用樣本平均數作為的估計值
,用樣本標準差
作為
的估計值
.請利用估計值判斷這2000名畢業生中,能夠參加三家公司面試的人數;
附:若隨機變量
,則
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設常數,函數
(1)當時,判斷
在
上單調性,并加以證明;
(2)當時,研究
的奇偶性,并說明理由;
(3)當時,若存在區間
使得
在
上的值域為
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列、
、
,對于給定的正整數
,記
,
.若對任意的正整數
滿足:
,且
是等差數列,則稱數列
為“
”數列.
(1)若數列的前
項和為
,證明:
為
數列;
(2)若數列為
數列,且
,求數列
的通項公式;
(3)若數列為
數列,證明:
是等差數列 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com