分析 a1,a3,a5,a7,a9的平均值是a5,結合方差的定義進行解答.
解答 解:∵數列{an}是等差數列,
∴a1,a3,a5,a7,a9的平均值是a5,
∵a1,a3,a5,a7,a9的方差為8,
∴$\frac{1}{5}$[(-4d)2+(-2d)2+0+(2d)2+(4d)2]=8,
解得d=±1.
故答案是:±1.
點評 本題考查了等差數列的性質,極差、方差與標準差.等差、等比數列的性質是兩種數列基本規律的深刻體現,是解決等差、等比數列問題既快捷又方便的工具,應有意識地去應用.但在應用性質時要注意性質的前提條件,有時需要進行適當變形.在解決等差、等比數列的運算問題時,經常采用“巧用性質、整體考慮、減少運算量”的方法.
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | $\sqrt{2}$-1 | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com