分析 (1)y=$\frac{2x-1}{x+1}$=$\frac{2(x+1)-3}{x+1}$=2-$\frac{3}{x+1}$,利用函數的單調性即可得出.
(2)y=4${\;}^{x-\frac{1}{2}}}$-3•2x+5=$\frac{1}{2}×({2}^{x})^{2}$-3•2x+5,令2x=t,由0≤x≤2,可得t∈[1,4].y=f(t)=$\frac{1}{2}×{t}^{2}$-3t+5=$\frac{1}{2}(t-3)^{2}$+$\frac{1}{2}$,再利用二次函數的單調性即可得出.
解答 解:(1)y=$\frac{2x-1}{x+1}$=$\frac{2(x+1)-3}{x+1}$=2-$\frac{3}{x+1}$,
∵x∈[3,5],∴$\frac{1}{x+1}$∈$[\frac{1}{6},\frac{1}{4}]$,
∴y∈$[\frac{5}{4},\frac{3}{2}]$.
(2)y=4${\;}^{x-\frac{1}{2}}}$-3•2x+5=$\frac{1}{2}×({2}^{x})^{2}$-3•2x+5,
令2x=t,∵0≤x≤2,∴t∈[1,4].
∴y=f(t)=$\frac{1}{2}×{t}^{2}$-3t+5=$\frac{1}{2}(t-3)^{2}$+$\frac{1}{2}$,
∴f(t)min=f(3)=$\frac{1}{2}$,當t=3,即x=log23時取得最小值.
而f(1)=$\frac{5}{2}$,f(4)=1.∴f(t)max=f(1)=$\frac{5}{2}$,當t=1,即x=0時,取得最大值.
點評 本題考查了反比例函數的單調性、二次函數與指數函數的單調性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | (0,$\frac{\sqrt{2}}{2}$) | B. | (0,$\frac{1}{2}$) | C. | (-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$) | D. | ($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com