分析 (1)直接利用三角函數的誘導公式化簡得答案;
(2)由f(α)=2,得tanα=2,然后化弦為切求值.
解答 解:(1)f(α)=$\frac{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{9π}{2}-α)}{cos(π-α)sin(3π-α)sin(-α)sin(\frac{3π}{2}+α)}$
=$\frac{(-sinα)(-cosα)(-sinα)sinα}{(-cosα)sinα(-sinα)(-cosα)}$=tanα;
(2)由f(α)=2,得tanα=2.
∴sin2α-sinαcosα-2cos2α=$\frac{si{n}^{2}α-sinαcosα-2co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$
=$\frac{ta{n}^{2}α-tanα-2}{ta{n}^{2}α+1}$=$\frac{4-2-2}{4+1}$=0.
點評 本題考查三角函數的化簡求值,考查了誘導公式及同角三角函數基本關系式的應用,是基礎的計算題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | -$\frac{\sqrt{2}}{2}$ | C. | 0 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com