日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
1.已知數列{an}對任意的n∈N*滿足:an+2+an>2an+1,則稱數列{an}為“T數列”.
(Ⅰ)求證:數列{2n}是“T數列”;
(Ⅱ)若${a_n}={n^2}•{({\frac{1}{2}})^n}$,試判斷數列{an}是否是“T數列”,并說明理由;
(Ⅲ)若數列{an}是各項均為正的“T數列”,求證:$\frac{{{a_1}+{a_3}+…+{a_{2n+1}}}}{{{a_2}+{a_4}+…+{a_{2n}}}}>\frac{n+1}{n}$.

分析 (Ⅰ)根據新定義證明即可,
(Ⅱ)根據新定義判斷即可,
(Ⅲ)原不等式等價于只需證n(a1+a3+…+a2n+1)>(n+1)a2+a4+…+a2n.利用數學歸納法證明即可

解答 解:(Ⅰ)∵2n+2n+2=5•2n,2•2n+1=4•2n,
∴an+2+an-2an+1=${2^{_{n+2}}}+{2_{^n}}-2•{2^{_{n+1}}}={2^n}>0$,
∴an+2+an>2an+1
∴數列{2n}是“T數列”;
(Ⅱ)${a_{n+2}}+{a_n}-2{a_{n+1}}={(n+2)^2}•{({\frac{1}{2}})^{n+2}}$$+{n^2}•{({\frac{1}{2}})^n}$$-2{(n+1)^2}•{({\frac{1}{2}})^{n+1}}$
=${({\frac{1}{2}})^n}•[\frac{{{{(n+2)}^2}}}{4}+{n^2}-{(n+1)^2}]$=${({\frac{1}{2}})^n}•({\frac{{{n^2}-4n}}{4}})>0$
解得,n>4,n∈N*,故數列{an}不是T數列.
(Ⅲ)要證$\frac{{{a_1}+{a_3}+…+{a_{2n+1}}}}{{{a_2}+{a_4}+…+{a_{2n}}}}>\frac{n+1}{n}$
只需證n(a1+a3+…+a2n+1)>(n+1)a2+a4+…+a2n
下面運用數學歸納法證明.
(ⅰ)當n=1時,a1+a3>2a2成立.
(ⅱ)假設當n=k時,不等式成立,
即k(a1+a3+…+a2k+1)>(k+1)a2+a4+…+a2k
那么當n=k+1時,
$\begin{array}{l}(k+1)({a_1}+{a_3}+…+{a_{2k+3}})-(k+2)({a_2}+{a_4}+…+{a_{2k+2}})\\=[k({a_1}+{a_3}+…+{a_{2k+1}})+({a_1}+{a_3}+…+{a_{2k+1}})+(k+1){a_{2k+3}}]\\-[(k+1)({a_2}+{a_4}+…+{a_{2k}})+({a_2}+{a_4}+…+{a_{2k}})+(k+2){a_{2k+2}}]\\>(k+1){a_{2k+3}}-(k+2){a_{2k+2}}+({a_1}+{a_3}+…+{a_{2k+1}})-({a_2}+{a_4}+…+{a_{2k}})\\=(k+1)({a_{2k+3}}-{a_{2k+2}})+({a_1}+{a_3}+…+{a_{2k+1}})-({a_2}+{a_4}+…+{a_{2k}}+{a_{2k+2}})\end{array}$
∵{an}是T數列,∴an+2+an>2an+1,∴an+2-an+1>an+1-an∴an+2-an+1>an+1-an>an-an-1>…>a2-a,
∴(a2k+3-a2k+2)>(a2k+2-a2k+1),(a2k+3-a2k+2)>(a2k-a2k-1),
依此類推(a2k+3-a2k+2)>(a2-a1),
將上述式子相加,得(k+1)(a2k+3-a2k+2)+(a1+a3+…+a2k+1)-(a2+a4+…+a2k+a2k+2)>0,
∴當n=k+1時不等式成立,
根據(。┖停áⅲ┛芍,
對于任意n∈N*不等式$\frac{{{a_1}+{a_3}+…+{a_{2n+1}}}}{{{a_2}+{a_4}+…+{a_{2n}}}}>\frac{n+1}{n}$均成立.

點評 本題考查了新定義的問題和數學歸納法,考查了學生的運算能力解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

11.已知a∈R,函數f(x)═log2($\frac{1}{x}$+a).
(1)若f(1)<2,求實數a的取值范圍;
(2)設函數g(x)=f(x)-log2[(a-4)x+2a-5],討論函數g(x)的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左焦點為F1,對定點M(6,4),若P為橢圓上一點,則|PF1|+|PM|的最大值為15.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.閱讀下面的程序框圖,運行相應的程序,輸出S的值為105

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.若變量x,y滿足條件$\left\{\begin{array}{l}3x-y≤0\\ x-3y+5≥0\\ x≥0\end{array}\right.$則z=x+y的最大值為( 。
A.$\frac{5}{2}$B.2C.$\frac{5}{3}$D.0

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.直線l:x+4y=2與圓C:x2+y2=1交于A、B兩點,O為坐標原點,若直線OA、OB的傾斜角分別為α、β,則cosα+cosβ=$\frac{4}{17}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.若函數f(x)=x2+$\frac{a-1}{x}$為偶函數,則實數a=1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.設α∈(0,$\frac{π}{3}$),滿足$\sqrt{3}$sinα+cosα=$\frac{\sqrt{6}}{2}$.
(1)求cos(α+$\frac{π}{6}$)的值;
(2)求cos(2α+$\frac{7}{12}$π)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知l為一條直線,α,β為兩個不同的平面,則下列說法正確的是( 。
A.若l∥α,α∥β,則l∥βB.若α⊥β,l⊥α,則l⊥βC.若l∥α,α⊥β,則l⊥βD.若l⊥α,α∥β,則l⊥β

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩视频一区在线观看 | www.午夜视频 | 国产成人免费视频网站高清观看视频 | 在线免费观看一区 | 国产伦精品一区二区三区照片91 | 中文字幕在线视频免费播放 | 久久久久99精品国产片 | 精品视频一区二区 | 啵啵影院午夜男人免费视频 | 韩日精品在线观看 | 欧美精品一 | 亚洲精品成人av | 国产精品久久久一区 | 成人国产精品久久久 | 吴梦梦到粉丝家实战华中在线观看 | 一级一级特黄女人精品毛片 | 亚洲精品成人无限看 | 欧美三区 | 亚洲啪视频 | 成人毛片在线观看 | 国产第一区在线观看 | 精品在线免费观看视频 | 国产免费黄网站 | 高清成人在线 | 国产精品久久久久免费视频 | 国产精品久久久久久中文字 | 9999精品 | 狠狠操狠狠操 | a视频在线观看 | av在线一区二区三区 | 国产精品久久国产精品99 gif | 8×8x拔擦拔擦在线视频网站 | 激情婷婷综合 | 2019天天干 | 国产精品嫩草99av在线 | 精品1区 | 97久久精品 | 国产美女高潮 | 好硬好涨老师受不了了视频 | 欧美日韩最新 | 国产激情偷乱视频一区二区三区 |