分析 (1)利用橢圓的離心率公式求得a2=b2+2,將點代入橢圓方程,即可求得a和b的值,求得橢圓方程;
(2)將直線代入橢圓方程,利用韋達定理及向量數量積的坐標運算,即可求得$\overrightarrow{PA}$•$\overrightarrow{PB}$+$\frac{4}{2{k}^{2}+1}$是常數.
解答 解:(1)由題意可知:2c=2$\sqrt{2}$,則c=$\sqrt{2}$,則a2=b2+2,
將($\sqrt{2}$,1),代入橢圓方程可得:$\frac{2}{^{2}+2}+\frac{1}{^{2}}=1$,解得:b2=2,則a2=4,
∴橢圓的標準方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$;
(2)證明:由$\left\{\begin{array}{l}{y=k(x+1)}\\{{x}^{2}+2{y}^{2}=4}\end{array}\right.$,整理得:(2k2+1)x2+4k2x+2k2-4=0,
設A(x1,y1),B(x2,y2),則x1+x2=-$\frac{4{k}^{2}}{2{k}^{2}+1}$,x1x2=$\frac{2{k}^{2}-4}{2{k}^{2}+1}$,
由$\overrightarrow{PA}$=(x1-$\frac{1}{4}$,y1),$\overrightarrow{PB}$=(x2-$\frac{1}{4}$,y2),
$\overrightarrow{PA}$•$\overrightarrow{PB}$+$\frac{4}{2{k}^{2}+1}$=(x1-$\frac{1}{4}$)(x2-$\frac{1}{4}$)+y1y2+$\frac{4}{2{k}^{2}+1}$,
=(x1-$\frac{1}{4}$)(x2-$\frac{1}{4}$)+k2(x1+1)(x1+1)+$\frac{4}{2{k}^{2}+1}$,
=(1+k2)x1x2+(k2-$\frac{1}{4}$)(x1+x2)+$\frac{4}{2{k}^{2}+1}$+k2+$\frac{1}{16}$,
=(1+k2)×$\frac{2{k}^{2}-4}{2{k}^{2}+1}$+(k2-$\frac{1}{4}$)(-$\frac{4{k}^{2}}{2{k}^{2}+1}$)+$\frac{4}{2{k}^{2}+1}$+k2+$\frac{1}{16}$,
=$\frac{1}{16}$,
∴$\overrightarrow{PA}$•$\overrightarrow{PB}$+$\frac{4}{2{k}^{2}+1}$是常數.
點評 本題考查橢圓的標準方程,直線與橢圓的位置關系,考查韋達定理,向量數量積的坐標運算,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ¬p:?x∈R,log5x<0 | B. | ¬p:?x∈R,log5x≤0 | C. | ¬p:?x∈R,log5x≤0 | D. | ¬p:?x∈R,log5x<0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
班級 | A | B | C | D | E | F |
抽取人數 | 6 | 10 | 12 | 12 | 6 | 4 |
其中達到預期水平的人數 | 3 | 6 | 6 | 6 | 4 | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | n+(n+1)+(n+2)+…+(3n-2)=n2 | B. | n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2 | ||
C. | n+(n+1)+(n+2)+…+(3n-1)=n2 | D. | n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com