日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
6.如圖,已知半圓O的半徑為1,點C在直徑AB的延長線上,且BC=1,P是半圓上動點,以PC為一邊作等腰直角三角形PCK(K為直角頂點,且K和O在PC的兩側).
(1)求四邊形OPKC面積的最大值;
(2)設t=$\frac{△POC的面積}{△PCK的面積}$,求t的最大值.

分析 (1)可以設∠POB=θ,四邊形面積為y,然后,建立關系式,構造面積關系式,最后利用三角函數知識求解最值;
(2)由t=$\frac{△POC的面積}{△PCK的面積}$=$\frac{4sinθ}{5-4cosθ}$,由半角公式及同角三角函數基本關系,求得t═$\frac{8tan\frac{θ}{2}}{9ta{n}^{2}\frac{θ}{2}+1}$=$\frac{8}{9tan\frac{θ}{2}+\frac{1}{tan\frac{θ}{2}}}$≤$\frac{8}{2×\sqrt{9tan\frac{θ}{2}•\frac{1}{tan\frac{θ}{2}}}}$=$\frac{4}{3}$,即可求得t的最大值.

解答 解:(1)設∠POC=θ,0<θ<π,
則在△POC中,由余弦定理得:PC2=OP2+OC2-2OP•OCcosθ=5-4cosθ.
∴PC2=5-4cos θ,…(4分)
SOPKC=S△OPC+S△PCD=$\frac{1}{2}$×1×2sinθ+$\frac{\sqrt{3}}{4}$(5-4cosθ)
=2sin(θ-$\frac{π}{3}$)+$\frac{5\sqrt{3}}{4}$,
當θ-$\frac{π}{3}$=$\frac{π}{2}$,即θ=$\frac{5π}{6}$時,四邊形OPKC面積的最大值;,
最大值為:2+$\frac{5\sqrt{3}}{4}$;
(2)t=$\frac{△POC的面積}{△PCK的面積}$,
=$\frac{4sinθ}{5-4cosθ}$,
=$\frac{8sin\frac{θ}{2}cos\frac{θ}{2}}{5(si{n}^{2}\frac{θ}{2}+co{s}^{2}\frac{θ}{2})-4(co{s}^{2}\frac{θ}{2}-si{n}^{2}\frac{θ}{2})}$,
=$\frac{8sin\frac{θ}{2}cos\frac{θ}{2}}{9si{n}^{2}\frac{θ}{2}+co{s}^{2}\frac{θ}{2}}$,
=$\frac{8tan\frac{θ}{2}}{9ta{n}^{2}\frac{θ}{2}+1}$,
=$\frac{8}{9tan\frac{θ}{2}+\frac{1}{tan\frac{θ}{2}}}$≤$\frac{8}{2×\sqrt{9tan\frac{θ}{2}•\frac{1}{tan\frac{θ}{2}}}}$=$\frac{4}{3}$,
當且僅當tan$\frac{θ}{2}$=$\frac{1}{3}$時,取“=”,
t的最大值為:$\frac{4}{3}$,

點評 本題重點考查了三角函數的輔助角公式、三角恒等變換等知識,基本不等式的綜合應用,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

18.函數f(x)=loga(2-$\frac{a}{x}$)(a>0且a≠1)在(1,2)上單調遞增,則a的取值范圍為(1,2].

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.設α,β是兩個不重合的平面,m,n是兩條不重合的直線,給出下列四個命題:
①若n?α,n∥β,α∩β=m,則n∥m;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α⊥β,α∩β=m,n?α,n⊥m,則n⊥β;
④m⊥α,α⊥β,m∥n,則n∥β.
其中正確的命題序號為①③.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.已知集合A={x|x2-x-2<0},集合B={x|y=lg(1-x2),則下列結論正確的是(  )
A.A=BB.A?BC.B?AD.A∩B=∅

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知△ABC的內角A,B,C對的邊分別為a,b,c,sinA+$\sqrt{2}$sinB=2sinC,b=2,則當cosC取得最小值時,a=$\frac{\sqrt{6}-\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知函數y=f(x)(x∈R)滿足f(-x)=-f(x),其導函數為y=f′(x),當x>0時,xf′(x)<f(x),若$a=2f(\frac{1}{2}),b=-\frac{1}{2}f(-2),c=-\frac{1}{ln2}f(ln\frac{1}{2})$,則a,b,c的大小關系為(  )
A.a<b<cB.b<c<aC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.把函數$y=sin(2x-\frac{π}{5})$的圖象上所有點向右平移$\frac{π}{5}$個單位,再把所有點的橫坐標縮短到原來的一半,所得圖象的表達式是(  )
A.$y=sin(4x-\frac{π}{5})$B.$y=sin(2x-\frac{2π}{5})$C.$y=sin(4x-\frac{2π}{5})$D.$y=sin(4x-\frac{3π}{5})$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知函數是定義在[-1,1]上的奇函數,且f(1)=1,若x,y∈[-1,1],x+y≠0,則有(x+y)[f(x)+f(y)]>0
(1)判斷f(x)的單調性,并加以證明
(2)解不等式f(x+$\frac{1}{2}$)<f(1-2x)
(3)若f(x)≤m2-2m-2,對任意的x∈[-1,1]恒成立,求實數m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.將5名男生,2名女生排成一排,要求男生甲必須站在中間,2名女生必須相鄰的排法種數有(  )
A.192種B.216種C.240種D.360種

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩欧美中文字幕在线观看 | 国产精品成人免费视频 | 日韩免费视频一区二区 | 国产伦精品一区二区三毛 | 九九视频免费观看 | 欧美xx孕妇 | 日日不卡av | av网站观看 | xxxxx黄色| 69免费视频 | 亚洲天堂久久久 | 波多野结衣亚洲一区 | 亚洲一区二区在线视频 | 在线观看日韩精品 | 天天艹夜夜艹 | 在线网站免费观看18 | 亚洲精品国产精品乱码不卡 | 天天色天天干天天 | 午夜视频免费在线观看 | 日本乱子伦| 国产欧美日韩综合精品 | 亚洲性视频 | 亚洲午夜一区 | 国产一区二区在线播放 | 在线观看免费毛片 | 国产精品二区一区二区aⅴ污介绍 | 91手机看片| 精品免费国产 | 在线日韩 | 欧美久久一区二区 | 国产美女视频 | 免费在线观看黄色片 | 99一区二区三区 | 国产黄色免费网站 | 欧美区在线 | 一区二区免费 | 97精品视频在线观看 | 欧美 日韩 国产 成人 在线 | 久久久久蜜桃 | 国产日韩欧美 | 性生活毛片 |