日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
1.已知△ABC的內角A,B,C對的邊分別為a,b,c,sinA+$\sqrt{2}$sinB=2sinC,b=2,則當cosC取得最小值時,a=$\frac{\sqrt{6}-\sqrt{2}}{4}$.

分析 已知等式利用正弦定理化簡,得到關系式,利用余弦定理表示出cosC,把得出關系式整理后代入,利用基本不等式求出cosC的最小值即可..

解答 解:△ABC中,∵sinA+$\sqrt{2}$sinB=2sinC,∴a+$\sqrt{2}$b=2c,
兩邊平方得:(a+$\sqrt{2}$b)2=4c2,即a2+2$\sqrt{2}$ab+2b2=4c2
即a2+b2-c2=3c2-b2-2$\sqrt{2}$ab=3•${(\frac{a+\sqrt{2}b}{2})}^{2}$-b2-2$\sqrt{2}$ab=$\frac{{3a}^{2}+{2b}^{2}-2\sqrt{2}ab}{4}$,
∴cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{{3a}^{2}+{2b}^{2}-2\sqrt{2}ab}{8ab}$=$\frac{3}{8}•\frac{a}{b}$+$\frac{1}{4}•\frac{b}{a}$-$\frac{\sqrt{2}}{4}$≥2$\sqrt{\frac{3a}{8b}•\frac{b}{4a}}$-$\frac{\sqrt{2}}{4}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
當且僅當$\frac{3a}{8b}$=$\frac{b}{4a}$,即當a=$\frac{2\sqrt{6}}{3}$,b=2時,cosC 取得最小值為$\frac{\sqrt{6}-\sqrt{2}}{4}$,
故答案為:$\frac{\sqrt{6}-\sqrt{2}}{4}$.

點評 此題考查了正弦、余弦定理,以及基本不等式的運用,熟練掌握定理是解本題的關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

13.log43、log34、log${\;}_{\frac{4}{3}}$$\frac{3}{4}$的大小順序是(  )
A.log34<log43<log${\;}_{\frac{4}{3}}$$\frac{3}{4}$B.log34>log43>log${\;}_{\frac{4}{3}}$$\frac{3}{4}$
C.log34>log${\;}_{\frac{4}{3}}$$\frac{3}{4}$>log43D.log${\;}_{\frac{4}{3}}$$\frac{3}{4}$>log34>log43

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.若集合A={y|y=2x,x∈R},B={y|y=x2,x∈R},則(  )
A.A?BB.B?AC.A=BD.A∩B=∅

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.在直三棱柱ABC-A1B1C1中,若BC⊥AC,$∠A=\frac{π}{3}$,AC=4,AA1=4,M為AA1的中點,P為BM的中點,Q在線段CA1上,A1Q=3QC.則異面直線PQ與AC所成角的正弦值為(  )
A.$\frac{{\sqrt{39}}}{13}$B.$\frac{{2\sqrt{13}}}{13}$C.$\frac{{2\sqrt{39}}}{13}$D.$\frac{{\sqrt{13}}}{13}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知等差數列{an}滿足a3=3,a5=9;數列{bn}的前n項和為Sn,且滿足${b}_{1}=1,{b}_{2}=3,{S}_{n+1}=4{S}_{n}-3{S}_{n-1}(n≥2,n∈{N}^{*})$.
(Ⅰ)分別求數列{an},{bn}的通項公式;
(Ⅱ)若對任意的$n∈{N}^{*},({S}_{n}+\frac{1}{2})?k≥{a}_{n}$恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.如圖,已知半圓O的半徑為1,點C在直徑AB的延長線上,且BC=1,P是半圓上動點,以PC為一邊作等腰直角三角形PCK(K為直角頂點,且K和O在PC的兩側).
(1)求四邊形OPKC面積的最大值;
(2)設t=$\frac{△POC的面積}{△PCK的面積}$,求t的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知點F(-c,0)(c>0)是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的左焦點,過F且平行于雙曲線漸近線的直線與圓x2+y2=c2交于點P,且點P在拋物線y2=4cx上,則該雙曲線的離心率是(  )
A.$\frac{{3+\sqrt{5}}}{2}$B.$\sqrt{\frac{{\sqrt{5}+1}}{2}}$C.$\frac{{\sqrt{5}-1}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.已知不等式$ax-\frac{1}{a}>0$的解集為(1,+∞),則a=1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.$A=\left\{{\left.x\right|y=\sqrt{2x-{x^2}}}\right\}$,$B=\left\{{\left.y\right|y=2-\frac{1}{{{x^2}+1}}}\right\}$,則A∩B=(  )
A.[1.2]B.(1.2]C.[1.2)D.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产视频一二三 | 午夜免费| 一区二区三区免费 | 亚洲伊人影院 | 深夜视频在线观看 | 性史性dvd影片农村毛片 | 天天干影院 | 成人免费视频网站 | 欧美成人精品欧美一级乱黄 | 超碰97在线免费观看 | 黄色1级片 | 玖玖视频在线 | www.亚洲精品 | 亚洲成人免费网站 | 每日更新av | 日韩精品免费观看 | 岛国av免费观看 | 欧美伊人久久 | 可以免费看黄的网站 | 国产一级片在线 | 亚洲毛片在线 | 日本国产欧美 | 亚洲黄色网址 | 国内外成人免费视频 | 高清av在线 | 欧美日韩在线看 | 国产成人一区二区 | 亚洲一区二区国产精品 | 欧美成人免费在线视频 | 日韩亚洲视频 | 91在线成人 | 一级黄色大片 | 伊人久久艹| 亚洲精品18在线观看 | 日韩精品中文字幕在线观看 | 最新超碰| 国产精品美女毛片真酒店 | 黄色片视频在线观看 | 国产福利视频 | 日韩视频一区二区 | 日韩久久精品 |