A. | $\frac{\sqrt{11}}{2}$-1 | B. | $\frac{\sqrt{10}}{2}$-1 | C. | 2 | D. | $\sqrt{3}$-1 |
分析 設圓心為C,則|MN|=|CM|-|CN|=|CM|-1,將|MN|的最小問題,轉化為|CM|的最小問題即可.
解答 解:設圓心為C,則|MN|=|CM|-|CN|=|CM|-1,C點坐標(3,0),
由于M在y2=x上,設M的坐標為(y2,y),
∴|CM|=$\sqrt{({y}^{2}-3)^{2}+{y}^{2}}$=$\sqrt{({y}^{2}-\frac{5}{2})^{2}+\frac{11}{4}}$≥$\frac{\sqrt{11}}{2}$,
∵圓半徑為1,
所以|MN|最小值為$\frac{\sqrt{11}}{2}$-1.
故選A.
點評 本題重點考查圓與圓錐曲線的綜合,考查拋物線上的動點和圓上的動點間的距離的最小值,將|MN|的最小問題,轉化為|CM|的最小問題是解題的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | -1,1 | B. | -$\frac{3}{2}$,-1 | C. | -$\frac{3}{2}$,3 | D. | -2,$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|0<x≤3} | B. | {x|1≤x≤3} | C. | {x|0≤x≤4} | D. | {x|1<x≤4} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | 2 | C. | $\frac{1}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com