分析 (1)連接AC,OF,設(shè)AC∩BD=O,推導(dǎo)出CF⊥平面ABCD,從而平面BCF⊥平面ABCD,推導(dǎo)出BD⊥AC,從而BD⊥平面BCF,進而BD⊥OF,由此能證明BF=DF.
(2)由點E為AF的中點,知四面體BDEF的體積${V_{B-DEF}}={V_{B-AED}}={V_{E-ABD}}=\frac{1}{2}{V_{F-ABD}}$,由此能求出四面體BDEF的體積.
解答 證明:(1)連接AC,OF,設(shè)AC∩BD=O,
∵平面ABCD⊥平面BCF,且交線為BC,∠BCF=90°,
∴CF⊥平面ABCD,CF?平面BCF,
∴平面BCF⊥平面ABCD,
∵四邊形ABCD是菱形,∴BD⊥AC,
∴BD⊥平面BCF,∴BD⊥OF,
又BO=DO,∴BF=DF.
解:(2)∵點E為AF的中點,
∴點F到平面ABCD的距離是E到平面ABCD的距離的2倍,
∴四面體BDEF的體積${V_{B-DEF}}={V_{B-AED}}={V_{E-ABD}}=\frac{1}{2}{V_{F-ABD}}$,
由(1)知CF⊥平面ABCD.
∴${V_{B-DEF}}=\frac{1}{2}×\frac{1}{3}×\frac{1}{2}×2×\sqrt{3}×2=\frac{{\sqrt{3}}}{3}$.
∴四面體BDEF的體積為$\frac{{\sqrt{3}}}{3}$.
點評 本題考查線段相等的證明,考查幾何體的體積的求法,考查空間中線線、線面、面面間的位置關(guān)系,考查推理論證能力、運算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想、函數(shù)與方程思想是,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 略有盈利 | B. | 無法判斷盈虧情況 | ||
C. | 沒有盈也沒有虧損 | D. | 略有虧損 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{3}{4}$ | B. | $\frac{3}{4}$ | C. | $-\frac{4}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2) | B. | [-2,+∞) | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com