【題目】對(duì)于數(shù)列、
,把和
叫做數(shù)列
與
的前
項(xiàng)泛和,記作為
.已知數(shù)列
的前
項(xiàng)和為
,且
.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列與數(shù)列
的前
項(xiàng)的泛和為
,且
恒成立,求實(shí)數(shù)
的取值范圍;
(3)從數(shù)列的前
項(xiàng)中,任取
項(xiàng)從小到大依次排列,得到數(shù)列
、
、
、
;再將余下的
項(xiàng)從大到小依次排列,得到數(shù)列
、
、
、
.求數(shù)列
與數(shù)列
的前
項(xiàng)的泛和
【答案】(1);(2)
;(3)
.
【解析】
(1)當(dāng)時(shí),求得
,當(dāng)
時(shí),可得
,由此判斷數(shù)列
為等比數(shù)列,進(jìn)而求得通項(xiàng);
(2)易知,中偶數(shù)項(xiàng)為
,奇數(shù)項(xiàng)為
(
為奇數(shù)),則可分
及
兩種情況,可得
與
的不等關(guān)系,再利用數(shù)列的性質(zhì)求解;
(3)解決該小問(wèn)的關(guān)鍵是分析出滿(mǎn)足,進(jìn)而問(wèn)題轉(zhuǎn)化為求數(shù)列
的前
項(xiàng)和,再利用錯(cuò)位相減法即可求解.
(1)當(dāng)時(shí),
;
當(dāng)時(shí),由
①,可得
②,
①②得,
,
數(shù)列
是以
為首項(xiàng),
為公比的等比數(shù)列,
;
(2)當(dāng)為偶數(shù)時(shí),即當(dāng)
時(shí),
,
故對(duì)任意的,
都成立,即
對(duì)任意的
恒成立,
易知,當(dāng)時(shí),
,故
;
當(dāng)為奇數(shù)時(shí),即當(dāng)
時(shí),
,
故對(duì)任意的,
恒成立,即
對(duì)任意的
恒成立.
易知,當(dāng)時(shí),
,故
.
綜上所述,實(shí)數(shù)的取值范圍是
;
(3)易知,數(shù)列的前
項(xiàng)中,奇偶項(xiàng)各一半,且奇數(shù)項(xiàng)為負(fù),偶數(shù)項(xiàng)為正,
設(shè)數(shù)列中任取了
個(gè)偶數(shù)項(xiàng),
個(gè)奇數(shù)項(xiàng),則數(shù)列
中必然是
個(gè)奇數(shù)項(xiàng),
個(gè)偶數(shù)項(xiàng),
又?jǐn)?shù)列由小到大排列,數(shù)列
由大到小排列,則必有
,即
.
,③
由③得,
,④
由③④得,
,
因此,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)試確定函數(shù)的零點(diǎn)個(gè)數(shù);
(2)設(shè),
是函數(shù)
的兩個(gè)零點(diǎn),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(
為參數(shù)).以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)直線(t為參數(shù))與曲線C交于A,B兩點(diǎn),求
最大時(shí),直線l的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
(
)過(guò)點(diǎn)
與
.
(1)求橢圓的方程;
(2)設(shè)過(guò)橢圓的右焦點(diǎn)
,且傾斜角為
的直線
和橢圓
交于
、
兩點(diǎn),對(duì)于橢圓
上任一點(diǎn)
,若
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為拋物線
的焦點(diǎn),過(guò)
的動(dòng)直線交拋物線
于
,
兩點(diǎn).當(dāng)直線與
軸垂直時(shí),
.
(1)求拋物線的方程;
(2)設(shè)直線的斜率為1且與拋物線的準(zhǔn)線
相交于點(diǎn)
,拋物線
上存在點(diǎn)
使得直線
,
,
的斜率成等差數(shù)列,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某中學(xué)學(xué)生對(duì)《中華人民共和國(guó)交通安全法》的了解情況,調(diào)查部門(mén)在該校進(jìn)行了一次問(wèn)卷調(diào)查(共12道題),從該校學(xué)生中隨機(jī)抽取40人,統(tǒng)計(jì)了每人答對(duì)的題數(shù),將統(tǒng)計(jì)結(jié)果分成,
,
,
,
,
六組,得到如下頻率分布直方圖.
(1)若答對(duì)一題得10分,未答對(duì)不得分,估計(jì)這40人的成績(jī)的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若從答對(duì)題數(shù)在內(nèi)的學(xué)生中隨機(jī)抽取2人,求恰有1人答對(duì)題數(shù)在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某品種一批樹(shù)苗生長(zhǎng)情況,在該批樹(shù)苗中隨機(jī)抽取了容量為120的樣本,測(cè)量樹(shù)苗高度(單位:),經(jīng)統(tǒng)計(jì),其高度均在區(qū)間
內(nèi),將其按
分成6組,制成如圖所示的頻率分布直方圖.其中高度為
及以上的樹(shù)苗為優(yōu)質(zhì)樹(shù)苗.
|
| 合計(jì) | |
優(yōu)質(zhì)樹(shù)苗 | 20 | ||
非優(yōu)質(zhì)樹(shù)苗 | 60 | ||
合計(jì) |
(1)求圖中的值,并估計(jì)這批樹(shù)苗高度的中位數(shù)和平均數(shù)(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)已知所抽取的這120棵樹(shù)苗來(lái)自于,
兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如上列聯(lián)表:將列聯(lián)表補(bǔ)充完整,并判斷是否有
的把握認(rèn)為優(yōu)質(zhì)樹(shù)苗與
,
兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說(shuō)明理由.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某客戶(hù)考察了一款熱銷(xiāo)的凈水器,使用壽命為十年,過(guò)濾由核心部件濾芯來(lái)實(shí)現(xiàn).在使用過(guò)程中,濾芯需要不定期更換,其中濾芯每個(gè)200元.如圖是根據(jù)100臺(tái)該款凈水器在十年使用期內(nèi)更換的濾芯的件數(shù)制成的柱狀圖.(以100臺(tái)凈水器更換濾芯的頻率代替1臺(tái)凈水器更換濾芯發(fā)生的概率)
(1)估計(jì)一臺(tái)凈水器在使用期內(nèi)更換濾芯的件數(shù)的眾數(shù)和中位數(shù).
(2)估計(jì)一臺(tái)凈水器在使用期內(nèi)更換濾芯的件數(shù)大于10的概率.
(3)已知上述100臺(tái)凈水器在購(gòu)機(jī)的同時(shí)購(gòu)買(mǎi)濾芯享受5折優(yōu)惠(使用過(guò)程中如需再購(gòu)買(mǎi)無(wú)優(yōu)惠),假設(shè)每臺(tái)凈水器在購(gòu)機(jī)的同時(shí)購(gòu)買(mǎi)濾芯10個(gè),這100臺(tái)凈水器在使用期內(nèi),更換濾芯的件數(shù)記為a,所需費(fèi)用記為y,補(bǔ)全下表,估計(jì)這100臺(tái)凈水器在使用期內(nèi)購(gòu)買(mǎi)濾芯所需總費(fèi)用的平均數(shù).
100臺(tái)該款凈水器在試用期內(nèi)更換濾芯的件數(shù)a | 9 | 10 | 11 | 12 |
頻數(shù) | ||||
費(fèi)用y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為等腰直角三角形,
,D為AC上一點(diǎn),將
沿BD折起,得到三棱錐
,且使得
在底面BCD的投影E在線段BC上,連接AE.
(1)證明:;
(2)若,求二面角
的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com