分析 (Ⅰ)推導出動點Q的軌跡為以M、F為焦點、長軸長為4的橢圓,由此能求出曲線C的方程.
(Ⅱ)設直線l的方程為y=kx+m,A(x1,y1),B(x2,y2),聯立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得(3+4k2)x2+8kmx+4m2-12=0,由此利用韋達定理、直線斜率公式求出m=4k,從而直線l的方程為y=kx+4k=k(x+4),由此得到直線l過定點(-4,0).
解答 解:(Ⅰ)由題意知|MQ|+|FQ|=|MN|=4,
又|MF|=2<4,
∴由橢圓定義知動點Q的軌跡為以M、F為焦點、長軸長為4的橢圓,
故2a=4,2c=2,
∴曲線C的方程是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(Ⅱ)設直線l的方程為y=kx+m,A(x1,y1),B(x2,y2),
聯立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得(3+4k2)x2+8kmx+4m2-12=0,
則${x}_{1}+{x}_{2}=\frac{-8km}{3+4{k}^{2}}$,${x}_{1}{x}_{2}=\frac{4{m}^{2}-12}{3+4{k}^{2}}$,
由已知,直線FA、FB的斜率之和為:
$\frac{{y}_{1}}{{x}_{1}+1}+\frac{{y}_{2}}{{x}_{2}+1}$=$\frac{k{x}_{1}+m}{{x}_{1}+1}+\frac{k{x}_{2}+m}{{x}_{2}+1}$=$\frac{2k{x}_{1}{x}_{2}+(k+m)({x}_{1}+{x}_{2})+2m}{{x}_{1}{x}_{2}+{x}_{1}+{x}_{2}+1}$=0,
∴2kx1x2+(k+m)(x1+x2)+2m=0,
將${x}_{1}+{x}_{2}=\frac{-8km}{3+4{k}^{2}}$,${x}_{1}{x}_{2}=\frac{4{m}^{2}-12}{3+4{k}^{2}}$代入,得:
$2k•\frac{4{m}^{2}-12}{3+4{k}^{2}}+(k+m)•\frac{-8km}{3+4{k}^{2}}$+2m=0,
化簡,得-4k+m=0,即m=4k,
∴直線l的方程為y=kx+4k=k(x+4),
∴直線l過定點(-4,0).
點評 本題考查曲線方程的求法,考查直線是否過定點的判斷與求法,涉及到橢圓、直線方程、圓、斜率公式等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數與方程思想,是中檔題.
科目:高中數學 來源: 題型:選擇題
A. | sin(α+β)<sinα+sinβ | B. | sin(α+β)>sinα+sinβ | ||
C. | cos(α+β)<sinα+sinβ | D. | cos(α+β)>cosα+cosβ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 最小值為2 | B. | 最大值為2 | C. | 最小值為-2 | D. | 最大值為-2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-$\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{4}$) | B. | (-$\sqrt{3}$,$\sqrt{3}$) | C. | ($-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3})$ | D. | ($-\sqrt{2},-\sqrt{2}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | -2 | D. | -3 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com