A. | f(4)<f(-1)<f($\frac{11}{2}$) | B. | f(-1)<f(4)<f($\frac{11}{2}$) | C. | f($\frac{11}{2}$)<f(4)<f(-1) | D. | f(-1)<f($\frac{11}{2}$)<f(4) |
分析 f(x+2)為偶函數,可得f(x+2)=f(-x+2),所以f(4)=f(0),f($\frac{11}{2}$)=f(-$\frac{3}{2}$),利用定義在R上的函數f(x)在(-∞,2)內為減函數,即可得出結論.
解答 解:∵f(x+2)為偶函數,∴f(x+2)=f(-x+2),
∴f(4)=f(0),f($\frac{11}{2}$)=f(-$\frac{3}{2}$),
∵0$>-1>-\frac{3}{2}$,定義在R上的函數f(x)在(-∞,2)內為減函數,
∴f(4)<f(-1)<f($\frac{11}{2}$),
故選A.
點評 本題考查了抽象函數的應用,考查學生轉化問題的能力,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 12 | B. | 8 | C. | $8\sqrt{3}$ | D. | 36 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com