試題分析:(Ⅰ)求證:平面

平面

,證明面面垂直,先證線面垂直,即證一個平面過另一個平面的垂線,注意到F,H分別為線段PB,PC的中點,所以FH∥BC,只要CB⊥平面

,則FH⊥平面

,由已知EA⊥平面ABCD,則EA⊥CB,而四邊形ABCD是正方形,CB⊥AB,從而可得CB⊥平面

,即可證出平面

平面

;(Ⅱ)這是一個探索性命題,一邊假設存在,作為條件,進行推理即可,有已知條件,先判斷EF⊥PB(因為若EF不垂直PB,則點

就不存在),若PB⊥平面EFM,只需使PB⊥FM,注意到三角形

是一個直角三角形,這樣△PFM∽△PCB,利用線段比例關系,可得PM=

,從得結論.
試題解析:(Ⅰ)因為EA⊥平面ABCD,所以EA⊥CB.
又因為CB⊥AB,AB∩AE=A,所以CB⊥平面ABE. 3分
由已知F,H分別為線段PB,PC的中點,所以FH∥BC,則FH⊥平面ABE. 5分
而FH?平面FGH,所以平面FGH⊥平面ABE. 6分
(Ⅱ)在線段PC上存在一點M,使PB⊥平面EFM.證明如下:在直角三角形AEB中,因為AE=1,AB=2,所以BE=

,
在直角梯形EADP中,因為AE=1,AD=PD=2,所以PE=

,所以PE=BE.
又因為F為PB的中點,所以EF⊥PB...8分
要使PB⊥平面EFM,只需使PB⊥FM. ..9分
因為PD⊥平面ABCD,所以PD⊥CB,又因為CB⊥CD,PD∩CD=D,
所以CB⊥平面PCD,而PC?平面PCD,所以CB⊥PC.
若PB⊥FM,則△PFM∽△PCB,可得

, 11分
由已知可求得PB=

,PF=

,PC=

,所以PM=

..12分