日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
3.某研究機構對高二文科學生的記憶力x和判斷力y進行統計分析,得下表數據
X681012
Y2356
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出f'(x)=3x2-6x關于f'(x)=0的線性回歸方程x1=0;
(3)試根據(2)求出的線性回歸方程,預測記憶力為14的同學的判斷力.
參考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x.

分析 (1)根據表中數據畫出散點圖即可;
(2)計算回歸系數,求出對應的線性回歸方程;
(3)利用回歸系數計算x=14時y的值.

解答 解:(1)畫出上表數據的散點圖,如圖所示;…(3分)

(2)計算$\sum_{i=1}^{n}$xiyi═6×2+8×3+10×5+12×6=158,
$\overline{x}$=$\frac{1}{4}$×(6+8+10+12)=9,
$\overline{y}$=$\frac{1}{4}$×(2+3+5+6)=4,
$\sum_{i=1}^{n}$${{x}_{i}}^{2}$=62+82+102+122=344,
$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{158-4×9×4}{344-4{×9}^{2}}$=$\frac{14}{20}$=0.7,
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=4-0.7×9=-2.3,
故線性回歸方程為:y=0.7x-2.3.…(10分)
(3)當x=14時,y=0.7×14-2.3=7.5,
即預測記憶力為14的同學判斷力為14.

點評 本題考查了線性回歸方程的應用問題,也考查了散點圖的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

13.定義非零向量$\overrightarrow{OM}$=(a,b)的“相伴函數”為f(x)=asinx+bcosx(x∈R),向量$\overrightarrow{OM}$=(a,b)稱為函數f(x)=asinx+bcosx(x∈R)的“相伴向量”(其中O為坐標原點).記平面內所有向量的“相伴函數”構成的集合為S
(1)設h(x)=$\sqrt{3}$cos(x+$\frac{π}{6}$)+3cos($\frac{π}{3}$-x)(x∈R),請問函數h(x)是否存在相伴向量$\overrightarrow{OM}$,若存在,求出與$\overrightarrow{OM}$共線的單位向量;若不存在,請說明理由.
(2)已知點M(a,b)滿足:$\frac{b}{a}∈(0,\sqrt{3}$],向量$\overrightarrow{OM}$的“相伴函數”f(x)在x=x0處取得最大值,求tan2x0的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.在復平面內,M、N兩點對應的復數分別為1-3i、-2+i,則|MN|=(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.$2\sqrt{5}$D.5

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知數列{an}的前n項積為Tn,即Tn=a1a2…an
(1)若數列{an}為首項為2016,公比為$q=-\frac{1}{2}$的等比數列,
①求Tn的表達式;②當n為何值時,Tn取得最大值;
(2)當n∈N*時,數列{an}都有an>0且${T_n}•{T_{n+1}}={({a_1}{a_n})^{\frac{n}{2}}}{({a_1}{a_{n+1}})^{\frac{n+1}{2}}}$成立,求證:{an}為等比數列.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.如圖,在四棱錐O-ABCD中,底面ABCD是四邊長為$\sqrt{2}$的菱形,$∠ABC=\frac{π}{4},OA⊥$底面ABCD,OA=2,M為OA的中點,N為BC的中點.
(1)證明:平面OAC⊥平面OBD;
(2)求平面BMN與平面OAD所成銳二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.在平面直角坐標系內,點P(x0,y0)到直線Ax+By+C=0的距離d=$\frac{|A{x}_{0}+B{y}_{0}+C|}{\sqrt{{A}^{2}+{B}^{2}}}$運用類比的思想,我們可以解決下面問題:在空間內直角坐標系內,點 P(2,1,1)到平面3x+4y+12z+4=0的距離d=2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.用數學歸納法證明“$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2^n}<f(n)$”時,由n=k不等式成立,證明n=k+1時,左邊應增加的項數是(  )
A.2k-1B.2k-1C.2kD.2k+1

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.函數f(x)=$\frac{{x}^{2}}{\sqrt{1-x}}$+lg(2x+1)的定義域為(-$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.如圖,四棱錐C-ABB1A1內接于圓柱OO1,且A1A,B1B都垂直于底面圓O,BC過底面圓心O,M,N分別是棱AA1,CB1的中點,MN⊥平面CBB1
(1)證明:MN∥平面ABC;
(2)求四棱錐C-ABB1A1與圓柱OO1的體積比.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久久久久久网站 | 亚洲国产日韩欧美 | 黄网免费看 | 夜夜嗨av一区二区三区网页 | 免费黄色小说网站 | 国产欧美欧洲 | 黄色a一级 | 亚洲欧美视频在线观看 | 性欧美bbw | 黄色a网站 | 国产盗摄一区二区 | 又黄又爽的网站 | 国产视频www | 三级视频网 | 男女无遮挡xx00动态图120秒 | 91久| av一区二区在线观看 | 亚洲精品久久久久久久久久久 | 日韩国产一区二区 | 中文字字幕在线 | 亚洲永久免费视频 | 日韩有码在线视频 | 精品欧美在线 | 亚洲精品三级 | 亚洲精品区 | 欧美1区2区 | 天天干夜夜 | 亚洲成人天堂 | 国产视频网 | 欧美视频精品 | 一二三区视频 | 成人午夜在线 | 视频一区二区在线 | 蜜臀av在线播放 | 精品蜜桃一区二区三区 | 国产美女自拍视频 | 黄色综合网 | 亚洲视频不卡 | 中文字幕视频 | 拍床戏真做h文黄肉1v1 | 中文字幕免费在线观看 |