A. | f(0)+f(2)<2f(1) | B. | f(0)+f(2)=2f(1) | C. | f(0)<f(1)<f(2) | D. | f(0)+f(2)>2f(1) |
分析 借助導數知識,根據(x-1)f′(x)<0,判斷函數的單調性,再利用單調性,比較函數值的大小即可.
解答 解:∵對于R上可導的任意函數f(x),(x-1)f′(x)>0
∴有$\left\{\begin{array}{l}{x-1>0}\\{f′(x)<0}\end{array}\right.$ 或 $\left\{\begin{array}{l}{x-1<0}\\{f′(x)>0}\end{array}\right.$,
即當x∈(1,+∞)時,f(x)為減函數,
當x∈(-∞,1)時,f(x)為增函數
∴f(0)<f(1),f(2)<f(1)
∴f(0)+f(2)<2f(1)
故選:A.
點評 本題考查了利用導數判斷抽象函數單調性,以及利用函數的單調性比較函數值的大小.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{4}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
年齡 | 頻數 | 頻率 | 男 | 女 |
[0,10) | 10 | 0.1 | 5 | 5 |
[10,20) | ① | ② | ③ | ④ |
[20,30) | 25 | 0.25 | 12 | 13 |
[30,40) | 20 | 0.2 | 10 | 10 |
[40,50) | 10 | 0.1 | 6 | 4 |
[50,60) | 10 | 0.1 | 3 | 7 |
[60,70) | 5 | 0.05 | 1 | 4 |
[70,80) | 3 | 0.03 | 1 | 2 |
[80,90) | 2 | 0.02 | 0 | 2 |
合計 | 100 | 1.00 | 45 | 55 |
50歲以上 | 50歲以下 | 合計 | |
男生 | |||
女生 | |||
合計 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
身高(cm) | [160,165) | [165,170) | [170,175) | [175,180) | [180,185) | [185,190) |
頻數 | 2 | 5 | 11 | 4 | 5 | 3 |
身高(cm) | [150,155) | [155,160) | [160,165) | [165,170) | [170,175) | [175,180) |
頻數 | 2 | 8 | 15 | 12 | 2 | 1 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com