A. | 0 | B. | $\frac{1}{11}$ | C. | -$\frac{1}{13}$ | D. | -$\frac{1}{7}$ |
分析 設等差數列{$\frac{1}{{a}_{n}+1}$}的公差為d,可得$\frac{1}{{a}_{5}+1}$=$\frac{1}{{a}_{3}+1}$+2d,代入已知解得d,再利用等差數列的通項公式即可得出..
解答 解:設等差數列{$\frac{1}{{a}_{n}+1}$}的公差為d,
∴$\frac{1}{{a}_{5}+1}$=$\frac{1}{{a}_{3}+1}$+2d,即$\frac{1}{1+1}$=$\frac{1}{2+1}$+2d,解得d=$\frac{1}{12}$.
∴$\frac{1}{{a}_{11}+1}$=$\frac{1}{1+1}$+$\frac{1}{12}×6$=1,
解得a11=0,
故選:A.
點評 本題考查了等差數列的通項公式與性質,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-2,+∞) | B. | (-2,1] | C. | [-1,2] | D. | (-3,-2)∪[1,2] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com