A. | 2:1 | B. | 3:1 | C. | 4:1 | D. | 5:1 |
分析 推導出VF-ABCD=2VF-ACD=2VD-AFB,S△AFB=2S△EFB,從而VD-AFB=2VC-EFB,由此能求出VF-ABCD:VF-CBE的值.
解答 解:∵矩形ABCD所在的平面和梯形ABEF所在的平面互相垂直,且AB∥EF,AB=2EF,
∴BC⊥平面ABEF,AF?平面ABEF,∴BC⊥AF,
又AF⊥BF,∴AF⊥平面BFC,
∴VF-ABCD=2VF-ACD=2VD-AFB,
VF-CBE=VC-EFB,
∵AB=2EF,∴S△AFB=2S△EFB,∴VD-AFB=2VC-EFB,
∴VF-ABCD:VF-CBE=4:1.
故選:C.
點評 本題考查兩個幾何體的體積的比值的求法,是基礎題,解題時要認真審題,注意空間思維能力的培養.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com