分析 $\overrightarrow{AC′}$2=( $\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CC′}$)2,由此利用向量能求出AC′的長.
解答 解:∵在平行六面體ABCD-A′B′C′D′中,
AB=3,AD=4,AA′=4,∠BAD=90°,
∠BAA′=∠DAA′=60°,
${\overrightarrow{AC′}}^{2}$=($\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CC′}$)2
=9+16+16+2×3×4×cos60°+2×4×4×cos60°
=69,
∴AC′的長是$\sqrt{69}$.
故答案為:$\sqrt{69}$.
點評 本題考查線段長的求法,是基礎題,解題時要認真審題,注意向量法的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 橫坐標向左平動$\frac{π}{4}$個單位長度 | B. | 橫坐標向右平移$\frac{π}{4}$個單位長度 | ||
C. | 橫坐標向左平移$\frac{π}{8}$個單位長度 | D. | 橫坐標向右平移$\frac{π}{8}$個單位長度 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=±2x | B. | y=±4x | C. | $y=±\frac{1}{4}x$ | D. | $y=±\frac{1}{2}x$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $(\frac{1}{e^3},\frac{1}{e^2})$ | B. | $(\frac{1}{e^2},\frac{1}{e})$ | C. | $(\frac{1}{e},\frac{1}{{\sqrt{e}}})$ | D. | $(\frac{1}{{\sqrt{e}}},1)$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com