A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{5π}{6}$ |
分析 由已知不妨設a=3x,b=5x,c=7x,x>0,利用余弦定理可求cosC=-$\frac{1}{2}$,結合范圍C∈(0,π),從而由特殊角的三角函數值即可得解C的值.
解答 解:∵△ABC中,已知a:b:c=3:5:7,不妨設a=3x,b=5x,c=7x,x>0,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{9{x}^{2}+25{x}^{2}-49{x}^{2}}{2×3x×5x}$=-$\frac{1}{2}$,
∵C∈(0,π),
∴C=$\frac{2π}{3}$.
故選:B.
點評 本題主要考查余弦定理的應用,根據三角函數的值求角,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ?x,y∈Z,x2+y2≠2015 | B. | ?x,y∈Z,x2+y2≠2015 | ||
C. | ?x,y∈Z,x2+y2=2015 | D. | 不存在x,y∈Z,x2+y2=2015 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 16,32 | B. | 8,32 | C. | 8,8 | D. | 32,32 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com