分析 先根據函數f(x)的圖象求出解析式,再根據g(x)=f(x)•(x-1)求得函數g(x)的解析式,分段求出最大值,則函數g(x)最大值可求.
解答 解:如圖,由圖可知,
函數f(x)的解析式為:f(x)=$\left\{\begin{array}{l}{2x,0≤x≤1}\\{-x+3,1<x≤3}\end{array}\right.$,
又∵g(x)=f(x)•(x-1),
∴函數g(x)的解析式為:
g(x)=$\left\{\begin{array}{l}{2{x}^{2}-2x,0≤x≤1}\\{-{x}^{2}+4x-3,1<x≤3}\end{array}\right.$,
當0≤x≤1時,g(x)=$2(x-\frac{1}{2})^{2}-\frac{1}{2}$,
∴g(x)max=g(1)=g(0)=0;
當1<x≤3時,g(x)=-(x-2)2+1≤1.
∴函數g(x)最大值為1,
故答案為:1.
點評 本題考查的是分段函數解析式的求法和分段函數求最值的求法,體現了數形結合、分類討論及數學轉化思想方法,是中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{{{(-1)}^n}+1}}{2}$ | B. | $cos\frac{nπ}{2}$ | C. | $cos\frac{(n+1)π}{2}$ | D. | $cos\frac{(n+2)π}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 以上都有可能 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com