【題目】已知是定義在
上的函數,如果存在常數
,對區間
的任意劃分:
,和式
恒成立,則稱
為
上的“絕對差有界函數”。注:
。
(1)證明函數在
上是“絕對差有界函數”。
(2)證明函數不是
上的“絕對差有界函數”。
(3)記集合存在常數
,對任意的
,有
成立
,證明集合
中的任意函數
為“絕對差有界函數”,并判斷
是否在集合
中,如果在,請證明并求
的最小值;如果不在,請說明理由。
【答案】(1)詳見解析;(2)詳見解析;(3)證明詳見解析,的最小值為
.
【解析】
(1)首先化簡函數,并且函數在區間
上為單調遞增函數,由定義可知任意劃分區間
,根據定義求
;
(2)取區間的一個劃分:
,代入則有
,由此根據定義判斷是否存在
;
(3)利用不等式的傳遞性證明,
,利用和差化積公式化簡證明求
的最小值.
解:(1)因為在區間
上為單調遞增函數,
所以當時,有
,
所以。
從而對區間的任意劃分:
,存在
,
成立。
綜上,函數在
上是“絕對差有界函數”。
(2)取區間的一個劃分:
,
則有:
所以對任意常數,只要
足夠大,就有區間
的一個劃分:
滿足
。
(3)證明:任取,存在常數
有
成立。從而對區間
的任意劃分:
,和式
成立。取
,所以集合
中的任意函數
為“絕對差有界函數”。
因為,所以對任意的
有
,
所以的最小值為
。
科目:高中數學 來源: 題型:
【題目】設單調函數的定義域為
,值域為
,如果單調函數
使得函數
的值域也是
,則稱函數
是函數
的一個“保值域函數”.已知定義域為
的函數
,函數
與
互為反函數,且
是
的一個“保值域函數”,
是
的一個“保值域函數”,則
__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,如果滿足:對任意
,存在常數
,都有
成立,則稱
是
上的有界函數,其中
稱為函數
的上界.
(1)設,判斷
在
上是否為有界函數,若是,請說明理由,并寫出
的所有上界
的集合;若不是,也請說明理由;
(2)若函數在
上是以
為上界的有界函數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在2019年女排世界杯中,中國女子排球隊以11連勝的優異戰績成功奪冠,為祖國母親七十華誕獻上了一份厚禮.排球比賽采用5局3勝制,前4局比賽采用25分制,每個隊只有贏得至少25分,并同時超過對方2分時,才勝1局;在決勝局(第五局)采用15分制,每個隊只有贏得至少15分,并領先對方2分為勝.在每局比賽中,發球方贏得此球后可得1分,并獲得下一球的發球權,否則交換發球權,并且對方得1分.現有甲乙兩隊進行排球比賽:
(1)若前三局比賽中甲已經贏兩局,乙贏一局.接下來兩隊贏得每局比賽的概率均為,求甲隊最后贏得整場比賽的概率;
(2)若前四局比賽中甲、乙兩隊已經各贏兩局比賽.在決勝局(第五局)中,兩隊當前的得分為甲、乙各14分,且甲已獲得下一發球權.若甲發球時甲贏1分的概率為,乙發球時甲贏1分的概率為
,得分者獲得下一個球的發球權.設兩隊打了
個球后甲贏得整場比賽,求x的取值及相應的概率p(x).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為正方形,
底面
,
,
為線段
的中點,若
為線段
上的動點(不含
).
(1)平面與平面
是否互相垂直?如果是,請證明;如果不是,請說明理由;
(2)求二面角的余弦值的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直四棱柱中,底面
為菱形,
且側棱
其中
為
的
交點.
(1)求點到平面
的距離;
(2)在線段上,是否存在一個點
,使得直線
與
垂直?若存在,求出線段
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知非空集合是由一些函數組成,滿足如下性質:①對任意
,
均存在反函數
,且
;②對任意
,方程
均有解;③對任意
、
,若函數
為定義在
上的一次函數,則
.
(1)若,
,均在集合
中,求證:函數
;
(2)若函數(
)在集合
中,求實數
的取值范圍;
(3)若集合中的函數均為定義在
上的一次函數,求證:存在一個實數
,使得對一切
,均有
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩個不相等的非零向量,兩組向量
和
均由2個
和3個
排列而成,記
,
表示
所有可能取值中的最小值,則下列命題中
(1)有5個不同的值;(2)若
則
與
無關;(3)若
,則
與
無關;(4)若
,則
;(5)若
,
,則
與
的夾角為
.正確的是( )
A.(1)(2)B.(2)(4)C.(3)(5)D.(1)(4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于無窮數列,
,若
-
…,則稱
是
的“收縮數列”.其中,
,
分別表示
中的最大數和最小數.已知
為無窮數列,其前
項和為
,數列
是
的“收縮數列”.
(1)若,求
的前
項和;
(2)證明:的“收縮數列”仍是
;
(3)若,求所有滿足該條件的
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com