【題目】已知非空集合是由一些函數組成,滿足如下性質:①對任意
,
均存在反函數
,且
;②對任意
,方程
均有解;③對任意
、
,若函數
為定義在
上的一次函數,則
.
(1)若,
,均在集合
中,求證:函數
;
(2)若函數(
)在集合
中,求實數
的取值范圍;
(3)若集合中的函數均為定義在
上的一次函數,求證:存在一個實數
,使得對一切
,均有
.
【答案】(1)見詳解;(2);(3)見詳解;
【解析】
(1)由,根據性質①可得
,且存在
,使得
,由
,且為一次函數,根據性質③即可證明.
(2)由性質②,方程,即
在
上有解,可得
,
變形,
.對
與
的關系分類討論,利用基本不等式的性質即可求解.
(3)任取,
,由性質①
,不妨設
,
(若,則
,
),
由性質③函數,
由性質①:,
由性質③:
由性質②方程:,可得
,即
,即可得證.
(1)由,根據性質①可得
,且存在
,使得
,由
,且為一次函數,
根據性質③可得:.
(2)由性質②,方程,即
在
上有解,
,
由,
若,
時,
,且
,
此時
沒有反函數,即不滿足性質①.
若,
時,函數
在
上單調遞增,
此時
有反函數,
即滿足性質①.
綜上:.
(3)任取,
,由性質①
,不妨設
,
(若,則
,
),
由性質③函數,
由性質①:,
由性質③:
由性質②方程:,
,即
,
,可得
,
,
,可得
,
,
由此可知:對于任意兩個函數,
,
存在相同的滿足:
,
存在一個實數
,使得對一切
,均有
.
科目:高中數學 來源: 題型:
【題目】記點到圖形
上每一個點的距離的最小值稱為點
到圖形
的距離,那么平面內到定圓
的距離與到定點
的距離相等的點的軌跡不可能是 ( )
A.圓B.橢圓C.雙曲線的一支D.直線
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數).以坐標原點
為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的普通方程和
的直角坐標方程;
(2)過點作傾斜角為
的直線
交
于
兩點,過
作與
平行的直線
交
于
點,若
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是定義在
上的函數,如果存在常數
,對區間
的任意劃分:
,和式
恒成立,則稱
為
上的“絕對差有界函數”。注:
。
(1)證明函數在
上是“絕對差有界函數”。
(2)證明函數不是
上的“絕對差有界函數”。
(3)記集合存在常數
,對任意的
,有
成立
,證明集合
中的任意函數
為“絕對差有界函數”,并判斷
是否在集合
中,如果在,請證明并求
的最小值;如果不在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若數列滿足
則稱
為
數列.記
(1)若為
數列,且
試寫出
的所有可能值;
(2)若為
數列,且
求
的最大值;
(3)對任意給定的正整數是否存在
數列
使得
?若存在,寫出滿足條件的一個
數列
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左焦點為F,短軸的兩個端點分別為A,B,且
,
為等邊三角形.
(1)求橢圓C的方程;
(2)如圖,點M在橢圓C上且位于第一象限內,它關于坐標原點O的對稱點為N;過點M作x軸的垂線,垂足為H,直線與橢圓C交于另一點J,若
,試求以線段
為直徑的圓的方程;
(3)已知是過點A的兩條互相垂直的直線,直線
與圓
相交于P,Q兩點,直線
與橢圓C交于另一點R,求
面積最大值時,直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業在“精準扶貧”行動中,決定幫助一貧困山區將水果運出銷售.現有8輛甲型車和4輛乙型車,甲型車每次最多能運6噸且每天能運4次,乙型車每次最多能運10噸且每天能運3次,甲型車每天費用320元,乙型車每天費用504元.若需要一天內把180噸水果運輸到火車站,則通過合理調配車輛,運送這批水果的費用最少為( )
A.2400元B.2560元C.2816元D.4576元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某甲籃球隊的12名隊員(含2名外援)中有5名主力隊員(含一名外援),主教練要從12名隊員中選5人首發上場,則主力隊員不少于4人,且有一名外援上場的概率是_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】第七屆世界軍人運動會于2019年10月18日至2019年10月27日在中國武漢舉行,第七屆世界軍人運動會是我國第一次承辦的綜合性國際軍事體育賽事,也是繼北京奧運會之后我國舉辦的規模最大的國際體育盛會.來自109個國家的9300余名軍體健兒在江城武漢同場競技、增進友誼.運動會共設置射擊、游泳、田徑、籃球等27個大項、329個小項.經過激烈角逐,獎牌榜的前6名如下:
某大學德語系同學利用分層抽樣的方式從德國獲獎選手中抽取了9名獲獎代表.
(1)請問這9名獲獎代表中獲金牌、銀牌、銅牌的人數分別是多少人?
(2)從這9人中隨機抽取3人,記這3人中銀牌選手的人數為,求
的分布列和期望;
(3)從這9人中隨機抽取3人,求已知這3人中有獲金牌運動員的前提下,這3人中恰好有1人為獲銅牌運動員的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com