【題目】已知橢圓的左焦點為F,短軸的兩個端點分別為A,B,且
,
為等邊三角形.
(1)求橢圓C的方程;
(2)如圖,點M在橢圓C上且位于第一象限內,它關于坐標原點O的對稱點為N;過點M作x軸的垂線,垂足為H,直線與橢圓C交于另一點J,若
,試求以線段
為直徑的圓的方程;
(3)已知是過點A的兩條互相垂直的直線,直線
與圓
相交于P,Q兩點,直線
與橢圓C交于另一點R,求
面積最大值時,直線
的方程.
【答案】(1)(2)
(3)
【解析】
(1)由題意可得,
,由
,
,
的關系,可得
的值,進而得橢圓
方程;
(2)設,即有
,
,
,運用向量的數量積的坐標表示,可得
,
,求出
的方程,代入橢圓方程,可得
的坐標,求得
的中點坐標和半徑,進而可得圓的方程;
(3)設,代入橢圓方程可得,運用韋達定理和弦長公式,再由三角形的面積公式,運用配方和二次函數的最值得求法,即可得到所求直線的方程.
(1)由題意可得,即
,又
為等邊三角形,可得
,
所以,
所以,橢圓的方程為:
.
(2)設,即有
,
,
,
由題意得,,即為
,解得
,
代入橢圓方程可得,,解得
,即有
,
,
所以直線方程為:
,將其代入橢圓方程得:
,
由,解得
點坐標為
,則
中點為
,
所以圓的半徑為,
即以線段為直徑的圓的方程為:
.
(3)設,代入橢圓方程可得,
,
解得,
,則
,
由題意可得直線的方程為
,代入圓的方程
中,
由弦長公式可得,
則的面積為
令,即有
,
所以
所以當,即有
,此時
,
有最大值,
即有直線的方程為
.
科目:高中數學 來源: 題型:
【題目】在2019年女排世界杯中,中國女子排球隊以11連勝的優異戰績成功奪冠,為祖國母親七十華誕獻上了一份厚禮.排球比賽采用5局3勝制,前4局比賽采用25分制,每個隊只有贏得至少25分,并同時超過對方2分時,才勝1局;在決勝局(第五局)采用15分制,每個隊只有贏得至少15分,并領先對方2分為勝.在每局比賽中,發球方贏得此球后可得1分,并獲得下一球的發球權,否則交換發球權,并且對方得1分.現有甲乙兩隊進行排球比賽:
(1)若前三局比賽中甲已經贏兩局,乙贏一局.接下來兩隊贏得每局比賽的概率均為,求甲隊最后贏得整場比賽的概率;
(2)若前四局比賽中甲、乙兩隊已經各贏兩局比賽.在決勝局(第五局)中,兩隊當前的得分為甲、乙各14分,且甲已獲得下一發球權.若甲發球時甲贏1分的概率為,乙發球時甲贏1分的概率為
,得分者獲得下一個球的發球權.設兩隊打了
個球后甲贏得整場比賽,求x的取值及相應的概率p(x).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直四棱柱中,底面
為菱形,
且側棱
其中
為
的
交點.
(1)求點到平面
的距離;
(2)在線段上,是否存在一個點
,使得直線
與
垂直?若存在,求出線段
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知非空集合是由一些函數組成,滿足如下性質:①對任意
,
均存在反函數
,且
;②對任意
,方程
均有解;③對任意
、
,若函數
為定義在
上的一次函數,則
.
(1)若,
,均在集合
中,求證:函數
;
(2)若函數(
)在集合
中,求實數
的取值范圍;
(3)若集合中的函數均為定義在
上的一次函數,求證:存在一個實數
,使得對一切
,均有
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,游客從某旅游景區的景點A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m/min.在甲出發2 min后,乙從A乘纜車到B,在B處停留1 min后,再從B勻速步行到C.假設纜車勻速直線運行的速度為130 m/min,山路AC長為1260 m,經測量,cos A=,cos C=
(1)求索道AB的長;
(2)問乙出發多少分鐘后,乙在纜車上與甲的距離最短?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩個不相等的非零向量,兩組向量
和
均由2個
和3個
排列而成,記
,
表示
所有可能取值中的最小值,則下列命題中
(1)有5個不同的值;(2)若
則
與
無關;(3)若
,則
與
無關;(4)若
,則
;(5)若
,
,則
與
的夾角為
.正確的是( )
A.(1)(2)B.(2)(4)C.(3)(5)D.(1)(4)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com