【題目】記點到圖形
上每一個點的距離的最小值稱為點
到圖形
的距離,那么平面內(nèi)到定圓
的距離與到定點
的距離相等的點的軌跡不可能是 ( )
A.圓B.橢圓C.雙曲線的一支D.直線
【答案】D
【解析】
根據(jù)題意“點P到圖形C上每一個點的距離的最小值稱為點P到圖形C的距離”,將平面內(nèi)到定圓C的距離轉(zhuǎn)化為到圓上動點的距離,再分點A現(xiàn)圓C的位置關(guān)系,結(jié)合圓錐曲線的定義即可解決.
排除法:設(shè)動點為Q,
1.當點A在圓內(nèi)不與圓心C重合,連接CQ并延長,交于圓上一點B,由題意知QB=QA,
又QB+QC=R,所以QA+QC=R,即Q的軌跡為一橢圓;如圖。
2.如果是點A在圓C外,由QCR=QA,得QCQA=R,為一定值,即Q的軌跡為雙曲線的一支;
3.當點A與圓心C重合,要使QB=QA,則Q必然在與圓C的同心圓,即Q的軌跡為一圓;
則本題選D.
故選D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人上午7時乘船出發(fā),以勻速海里/小時
從
港前往相距50海里的
港,然后乘汽車以勻速
千米/小時(
)自
港前往相距
千米的
市,計劃當天下午4到9時到達
市.設(shè)乘船和汽車的所要的時間分別為
、
小時,如果所需要的經(jīng)費
(單位:元)
(1)試用含有、
的代數(shù)式表示
;
(2)要使得所需經(jīng)費最少,求
和
的值,并求出此時的費用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線由兩個橢圓
:
和橢圓
:
組成,當
成等比數(shù)列時,稱曲線
為“貓眼曲線”.
(1)若貓眼曲線過點
,且
的公比為
,求貓眼曲線
的方程;
(2)對于題(1)中的求貓眼曲線,任作斜率為
且不過原點的直線與該曲線相交,交橢圓
所得弦的中點為M,交橢圓
所得弦的中點為N,求證:
為與
無關(guān)的定值;
(3)若斜率為的直線
為橢圓
的切線,且交橢圓
于點
,
為橢圓
上的任意一點(點
與點
不重合),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)單調(diào)函數(shù)的定義域為
,值域為
,如果單調(diào)函數(shù)
使得函數(shù)
的值域也是
,則稱函數(shù)
是函數(shù)
的一個“保值域函數(shù)”.已知定義域為
的函數(shù)
,函數(shù)
與
互為反函數(shù),且
是
的一個“保值域函數(shù)”,
是
的一個“保值域函數(shù)”,則
__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
,…,
是由
(
)個整數(shù)
,
,…,
按任意次序排列而成的數(shù)列,數(shù)列
滿足
(
),
,
,…,
是
,
,…,
按從大到小的順序排列而成的數(shù)列,記
.
(1)證明:當為正偶數(shù)時,不存在滿足
(
)的數(shù)列
.
(2)寫出(
),并用含
的式子表示
.
(3)利用,證明:
及
.(參考:
.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),且
(其中e是自然對數(shù)的底數(shù)).
(Ⅰ)若,求
的單調(diào)區(qū)間;
(Ⅱ)若,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,
、
分別是棱
、
的中點,
、
分別是線段
與
上的點,則與平面
平行的直線
有( )
A.0條B.1條C.2條D.無數(shù)條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)
,如果滿足:對任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界.
(1)設(shè),判斷
在
上是否為有界函數(shù),若是,請說明理由,并寫出
的所有上界
的集合;若不是,也請說明理由;
(2)若函數(shù)在
上是以
為上界的有界函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知非空集合是由一些函數(shù)組成,滿足如下性質(zhì):①對任意
,
均存在反函數(shù)
,且
;②對任意
,方程
均有解;③對任意
、
,若函數(shù)
為定義在
上的一次函數(shù),則
.
(1)若,
,均在集合
中,求證:函數(shù)
;
(2)若函數(shù)(
)在集合
中,求實數(shù)
的取值范圍;
(3)若集合中的函數(shù)均為定義在
上的一次函數(shù),求證:存在一個實數(shù)
,使得對一切
,均有
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com