【題目】定義在上的函數(shù)
,如果滿足:對任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界.
(1)設(shè),判斷
在
上是否為有界函數(shù),若是,請說明理由,并寫出
的所有上界
的集合;若不是,也請說明理由;
(2)若函數(shù)在
上是以
為上界的有界函數(shù),求實數(shù)
的取值范圍.
【答案】(1)是,理由見解析,(2)
【解析】
(1)根據(jù)的單調(diào)性求得
在區(qū)間
上的取值范圍,由此得出
,進而判斷出
在在
上是有界函數(shù),并由此求得所有上屆
的集合.
(2)根據(jù)的上界得到
,令
進行換元、分離常數(shù)
,將問題轉(zhuǎn)化為
,然后利用導數(shù)求得在區(qū)間
上,函數(shù)
的最大值以及函數(shù)
的最小值,由此求得實數(shù)
的取值范圍.
(1),
,則
在
上是增函數(shù),故
,即
,
故,所以
是有界函數(shù).
所以,上界滿足
,所有上界
的集合是
.
(2)由題意,對
恒成立,
即,
令,則
,原不等式變?yōu)?/span>
,
故, 故
,
令,當
時,
,即函數(shù)
在區(qū)間
上是增函數(shù),故
.
令,當
時,
,即函數(shù)
在區(qū)間
上是減函數(shù),故
.
綜上,實數(shù)的取值范圍是
.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列的所有項都是不等于
的正數(shù),
的前
項和為
,已知點
在直線
上(其中常數(shù)
,且
)數(shù)列,又
.
(1)求證數(shù)列是等比數(shù)列;
(2)如果,求實數(shù)
的值;
(3)若果存在使得點
和
都在直線在
上,是否存在自然數(shù)
,當
(
)時,
恒成立?若存在,求出
的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記點到圖形
上每一個點的距離的最小值稱為點
到圖形
的距離,那么平面內(nèi)到定圓
的距離與到定點
的距離相等的點的軌跡不可能是 ( )
A.圓B.橢圓C.雙曲線的一支D.直線
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于數(shù)列,稱
(其中
)為數(shù)列
的前k項“波動均值”.若對任意的
,都有
,則稱數(shù)列
為“趨穩(wěn)數(shù)列”.
(1)若數(shù)列1,,2為“趨穩(wěn)數(shù)列”,求
的取值范圍;
(2)若各項均為正數(shù)的等比數(shù)列的公比
,求證:
是“趨穩(wěn)數(shù)列”;
(3)已知數(shù)列的首項為1,各項均為整數(shù),前
項的和為
. 且對任意
,都有
, 試計算:
(
).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)為函數(shù)
(
,
為定義域)圖像上的一個動點,
為坐標原點,
為點
與點
兩點間的距離.
(1)若,求
的最大值與最小值;
(2)若,是否存在實數(shù)
,使得
的最小值不小于2?若存在,請求出
的取值范圍;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年反映社會現(xiàn)實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當務(wù)之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用
(百萬元)和銷量
(萬盒)的統(tǒng)計數(shù)據(jù)如下:
研發(fā)費用 | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
銷量 | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)求與
的相關(guān)系數(shù)
精確到0.01,并判斷
與
的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:
時,可用線性回歸方程模型擬合);
(2)該藥企準備生產(chǎn)藥品的三類不同的劑型
,
,
,并對其進行兩次檢測,當?shù)谝淮螜z測合格后,才能進行第二次檢測.第一次檢測時,三類劑型
,
,
合格的概率分別為
,
,
,第二次檢測時,三類劑型
,
,
合格的概率分別為
,
,
.兩次檢測過程相互獨立,設(shè)經(jīng)過兩次檢測后
,
,
三類劑型合格的種類數(shù)為
,求
的數(shù)學期望.
附:(1)相關(guān)系數(shù)
(2),
,
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數(shù)方程為
(
為參數(shù)).以坐標原點
為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的普通方程和
的直角坐標方程;
(2)過點作傾斜角為
的直線
交
于
兩點,過
作與
平行的直線
交
于
點,若
,求
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在
上的函數(shù),如果存在常數(shù)
,對區(qū)間
的任意劃分:
,和式
恒成立,則稱
為
上的“絕對差有界函數(shù)”。注:
。
(1)證明函數(shù)在
上是“絕對差有界函數(shù)”。
(2)證明函數(shù)不是
上的“絕對差有界函數(shù)”。
(3)記集合存在常數(shù)
,對任意的
,有
成立
,證明集合
中的任意函數(shù)
為“絕對差有界函數(shù)”,并判斷
是否在集合
中,如果在,請證明并求
的最小值;如果不在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某甲籃球隊的12名隊員(含2名外援)中有5名主力隊員(含一名外援),主教練要從12名隊員中選5人首發(fā)上場,則主力隊員不少于4人,且有一名外援上場的概率是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com