【題目】2018年反映社會現實的電影《我不是藥神》引起了很大的轟動,治療特種病的創新藥研發成了當務之急.為此,某藥企加大了研發投入,市場上治療一類慢性病的特效藥品的研發費用
(百萬元)和銷量
(萬盒)的統計數據如下:
研發費用 | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
銷量 | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)求與
的相關系數
精確到0.01,并判斷
與
的關系是否可用線性回歸方程模型擬合?(規定:
時,可用線性回歸方程模型擬合);
(2)該藥企準備生產藥品的三類不同的劑型
,
,
,并對其進行兩次檢測,當第一次檢測合格后,才能進行第二次檢測.第一次檢測時,三類劑型
,
,
合格的概率分別為
,
,
,第二次檢測時,三類劑型
,
,
合格的概率分別為
,
,
.兩次檢測過程相互獨立,設經過兩次檢測后
,
,
三類劑型合格的種類數為
,求
的數學期望.
附:(1)相關系數
(2),
,
,
.
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,一單位圓的圓心的初始位置在,此時圓上一點P的位置在
,圓在x軸上沿正向滾動.當圓滾動到圓心位于
時,
的坐標為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設無窮數列的前
項和為
,已知
,
.
(1)求的值;
(2)求數列的通項公式;
(3)是否存在數列的一個無窮子數列
,使
對一切
均成立?若存在,請寫出數列
的所有通項公式;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前
項和為
,且滿足
;數列
的前
項和為
,且滿足
,
,
.
(1)求數列的通項公式;
(2)求數列的通項公式;
(3)是否存在正整數,使得
恰為數列
中的一項?若存在,求滿足要求的那幾項;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A. 命題“x∈R,使得”的否定是:“x∈R,
”.
B. “為真命題”是“
為真命題”的必要不充分條件.
C. ,“
”是“
”的必要不充分條件.
D. 命題p:“”,則﹁p是真命題.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個結論中正確的個數是
(1)對于命題使得
,則
都有
;
(2)已知,則
(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;
(4)“”是“
”的充分不必要條件.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某醫院一天派出醫生下鄉醫療,派出醫生人數及其概率如下:
醫生人數 | 0 | 1 | 2 | 3 | 4 | 5人及以上 |
概率 | 0.1 | 0.16 | 0.3 | 0.2 | 0.2 | 0.04 |
求:(1)派出醫生至多2人的概率;
(2)派出醫生至少2人的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com