【題目】在直角坐標(biāo)系xOy中,一單位圓的圓心的初始位置在,此時(shí)圓上一點(diǎn)P的位置在
,圓在x軸上沿正向滾動(dòng).當(dāng)圓滾動(dòng)到圓心位于
時(shí),
的坐標(biāo)為________.
【答案】
【解析】
設(shè)滾動(dòng)后圓的圓心為C,切點(diǎn)為A,連接CP.過(guò)C作與x軸正方向平行的射線(xiàn),交圓C于B(2,1),設(shè)∠BCP=θ,則根據(jù)圓的參數(shù)方程,得P的坐標(biāo)為(1+cosθ,1+sinθ),再根據(jù)圓的圓心從(0,1)滾動(dòng)到(1,1),算出,結(jié)合三角函數(shù)的誘導(dǎo)公式,化簡(jiǎn)可得P的坐標(biāo)為
,即為向量
的坐標(biāo).
設(shè)滾動(dòng)后的圓的圓心為C,切點(diǎn)為,連接CP,
過(guò)C作與x軸正方向平行的射線(xiàn),交圓C于,設(shè)
,
∵C的方程為,
∴根據(jù)圓的參數(shù)方程,得P的坐標(biāo)為,
∵單位圓的圓心的初始位置在,圓滾動(dòng)到圓心位于
,
,可得
,
可得,
,
代入上面所得的式子,得到P的坐標(biāo)為,
所以的坐標(biāo)是
.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,摩天輪上的一點(diǎn)在
時(shí)刻距離地面的高度滿(mǎn)足
,已知該摩天輪的半徑為60米,摩天輪轉(zhuǎn)輪中心O距離地面的高度是70米,摩天輪逆時(shí)針做勻速轉(zhuǎn)動(dòng),每6分鐘轉(zhuǎn)一圈,點(diǎn)
的起始位置在摩天輪的最低點(diǎn)
處.
(1)根據(jù)條件求出y(米)關(guān)于(分鐘)的解析式;
(2)在摩天輪從最低點(diǎn)開(kāi)始計(jì)時(shí)轉(zhuǎn)動(dòng)的一圈內(nèi),有多長(zhǎng)時(shí)間點(diǎn)P距離地面不低于100米?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】上饒某購(gòu)物中心在開(kāi)業(yè)之后,為了解消費(fèi)者購(gòu)物金額的分布,在當(dāng)月的電腦消費(fèi)小票中隨機(jī)抽取張進(jìn)行統(tǒng)計(jì),將結(jié)果分成5組,分別是
,制成如圖所示的頻率分布直方圖(假設(shè)消費(fèi)金額均在
元的區(qū)間內(nèi)).
(1)若在消費(fèi)金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再?gòu)闹腥芜x2張,求這2張小票均來(lái)自
元區(qū)間的概率;
(2)為做好五一勞動(dòng)節(jié)期間的商場(chǎng)促銷(xiāo)活動(dòng),策劃人員設(shè)計(jì)了兩種不同的促銷(xiāo)方案:
方案一:全場(chǎng)商品打8.5折;
方案二:全場(chǎng)購(gòu)物滿(mǎn)200元減20元,滿(mǎn)400元減50元,滿(mǎn)600元減80元,滿(mǎn)800元減120元,以上減免只取最高優(yōu)惠,不重復(fù)減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說(shuō)明理由(直方圖中每個(gè)小組取中間值作為該組數(shù)據(jù)的替代值).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角梯形中,
,
,
,
,
,
為線(xiàn)段
(含端點(diǎn))上的一個(gè)動(dòng)點(diǎn).設(shè)
,
,對(duì)于函數(shù)
,下列描述正確的是( )
A.的最大值和
無(wú)關(guān)B.
的最小值和
無(wú)關(guān)
C.的值域和
無(wú)關(guān)D.
在其定義域上的單調(diào)性和
無(wú)關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn)、
,直線(xiàn)
、
相交于點(diǎn)
,且它們的斜率之積為
,記動(dòng)點(diǎn)
的軌跡為曲線(xiàn)
.
(Ⅰ)求曲線(xiàn)的方程;
(Ⅱ)過(guò)點(diǎn)的直線(xiàn)
與曲線(xiàn)
交于
、
兩點(diǎn),是否存在定點(diǎn)
,使得直線(xiàn)
與
斜率之積為定值,若存在求出
坐標(biāo);若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
是梯形,
,
,
,
,側(cè)面
底面
.
(1)求證:平面平面
;
(2)若與底面
所成角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在
軸上的橢圓
過(guò)點(diǎn)
,離心率為
.
(1)求橢圓的方程;
(2)直線(xiàn)過(guò)橢圓
的左焦點(diǎn)
,且與橢圓
交于
兩點(diǎn),若
的面積為
,求直線(xiàn)
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,PA⊥平面ABCD,CD⊥AD,BC∥AD,
.
(Ⅰ)求證:CD⊥PD;
(Ⅱ)求證:BD⊥平面PAB;
(Ⅲ)在棱PD上是否存在點(diǎn)M,使CM∥平面PAB,若存在,確定點(diǎn)M的位置,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn):
和圓
:
,給出下列說(shuō)法:①直線(xiàn)
和圓
不可能相切;②當(dāng)
時(shí),直線(xiàn)
平分圓
的面積;③若直線(xiàn)
截圓
所得的弦長(zhǎng)最短,則
;④對(duì)于任意的實(shí)數(shù)
,有且只有兩個(gè)
的取值,使直線(xiàn)
截圓
所得的弦長(zhǎng)為
.其中正確的說(shuō)法個(gè)數(shù)是( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com