A. | $0<{x_0}<\frac{1}{2}$ | B. | $\frac{1}{2}<{x_0}<1$ | C. | $\frac{{\sqrt{2}}}{2}<{x_0}<\sqrt{2}$ | D. | $\sqrt{2}<{x_0}<\sqrt{3}$ |
分析 求出函數y=x2的導數,y=lnx的導數,求出切線的斜率,切線的方程,可得2x0=$\frac{1}{m}$,lnm-1=-x02,再由零點存在定理,即可得到所求范圍.
解答 解:函數y=x2的導數為y′=2x,
在點(x0,x02)處的切線的斜率為k=2x0,
切線方程為y-x02=2x0(x-x0),
設切線與y=lnx相切的切點為(m,lnm),0<m<1,
即有y=lnx的導數為y′=$\frac{1}{x}$,
可得2x0=$\frac{1}{m}$,切線方程為y-lnm=$\frac{1}{m}$(x-m),
令x=0,可得y=lnm-1=-x02,
由0<m<1,可得x0>$\frac{1}{2}$,且x02>1,
解得x0>1,
由m=$\frac{1}{2{x}_{0}}$,可得x02-ln(2x0)-1=0,
令f(x)=x2-ln(2x)-1,x>1,
f′(x)=2x-$\frac{1}{x}$>0,f(x)在x>1遞增,
且f($\sqrt{2}$)=2-ln2$\sqrt{2}$-1<0,f($\sqrt{3}$)=3-ln2$\sqrt{3}$-1>0,
則有x02-ln(2x0)-1=0的根x0∈($\sqrt{2}$,$\sqrt{3}$).
故選:D.
點評 本題考查導數的運用:求切線的方程和單調區間,考查函數方程的轉化思想,以及函數零點存在定理的運用,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1023 | B. | -1024 | C. | 1025 | D. | -1025 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $[{-1,\sqrt{3}}]$ | B. | $[{-2,\sqrt{3}}]$ | C. | $[{-\sqrt{3},2}]$ | D. | $[{1,\sqrt{3}}]$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com