分析 由條件利用二次函數的性質可得$\left\{\begin{array}{l}{f(-2)=2a+2a>0}\\{f(0)=2a-4<0}\\{f(1)=a-3<0}\\{f(3)=5-a>0}\end{array}\right.$,由此求得a的范圍.
解答 解:∵函數f(x)=x2-ax+2a-4的一個零點在區間(-2,0)內,另一個零點在區間(1,3)內,
∴$\left\{\begin{array}{l}{f(-2)=2a+2a>0}\\{f(0)=2a-4<0}\\{f(1)=a-3<0}\\{f(3)=5-a>0}\end{array}\right.$,求得0<a<2,
故答案為:(0,2).
點評 本題主要考查一元二次方程根的分布與系數的關系,二次函數的性質,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | 2 | C. | $\frac{5}{3}$ | D. | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com